Loading…

Comparison between hexatriacontane and stearic acid behaviours under late Ar―O2 post-discharge

The transformations undergone in a late Ar―O2 afterglow by the hexatriacontane, a long chain alkane, and the stearic acid, a C18 alkane skeleton with an acid function, are compared. The diffusion of molecular oxygen is found to be the limiting step in the case of the HTC. When the SA is treated, thi...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2011-07, Vol.205 (2), p.S443-S446
Main Authors: Belmonte, T., Bernardelli, E.A., Mafra, M., Duday, D., Frache, G., Poncin-Epaillard, F., Noël, C., Choquet, P., Migeon, H.-N., Maliska, A.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-63f6d261f37052514d931b804854653b1c0ba392b013e8a8745e704a7a32f6a83
cites cdi_FETCH-LOGICAL-c291t-63f6d261f37052514d931b804854653b1c0ba392b013e8a8745e704a7a32f6a83
container_end_page S446
container_issue 2
container_start_page S443
container_title Surface & coatings technology
container_volume 205
creator Belmonte, T.
Bernardelli, E.A.
Mafra, M.
Duday, D.
Frache, G.
Poncin-Epaillard, F.
Noël, C.
Choquet, P.
Migeon, H.-N.
Maliska, A.M.
description The transformations undergone in a late Ar―O2 afterglow by the hexatriacontane, a long chain alkane, and the stearic acid, a C18 alkane skeleton with an acid function, are compared. The diffusion of molecular oxygen is found to be the limiting step in the case of the HTC. When the SA is treated, this process is fast, likely because of the high diffusion coefficient of O2 in the SA than in the HTC. Desorption of OH groups produced by the abstraction of one hydrogen from the alkane skeleton by an oxygen atom is proposed as the limiting step. The fragmentation process stands in the core of the material and creates by-products that are responsible for the appearance of bubbles whose mobility and coarsening depend on the viscosity of the treated material. Finally, by resorting to pulse mode, both the HTC and the SA can be etched whereas they are functionalized in the continuous mode where non-linear behaviours are observed.
doi_str_mv 10.1016/j.surfcoat.2011.03.041
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02447129v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897211002301</els_id><sourcerecordid>oai_HAL_hal_02447129v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-63f6d261f37052514d931b804854653b1c0ba392b013e8a8745e704a7a32f6a83</originalsourceid><addsrcrecordid>eNqFkMGO0zAQhi0EEmXhFZAvHDgkzNhOnNyoKmCRKu0FzmbiTKirblzZboEbL8EL8iSkKuyV00ij75tf8wvxEqFGwPbNvs6nNPlIpVaAWIOuweAjscLO9pXWxj4WK1CNrbreqqfiWc57AEDbm5X4son3R0ohx1kOXL4xz3LH36mkQD7OhWaWNI8yF14oL8mHcQF3dA7xlLI8zSMneaDCcp1-__x1p-Qx5lKNIfsdpa_8XDyZ6JD5xd95Iz6_f_dpc1tt7z583Ky3lVc9lqrVUzuqFidtoVENmrHXOHRgusa0jR7Qw0C6VwOg5o46axq2YMiSVlNLnb4Rr693d3RwxxTuKf1wkYK7XW_dZQfKGIuqP-PCtlfWp5hz4ulBQHCXTt3e_evUXTp1oN3S6SK-uopHyp4OU6LZh_xgLwmorLEL9_bK8fLxOXBy2QeePY8hsS9ujOF_UX8ApqiQqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison between hexatriacontane and stearic acid behaviours under late Ar―O2 post-discharge</title><source>Elsevier</source><creator>Belmonte, T. ; Bernardelli, E.A. ; Mafra, M. ; Duday, D. ; Frache, G. ; Poncin-Epaillard, F. ; Noël, C. ; Choquet, P. ; Migeon, H.-N. ; Maliska, A.M.</creator><creatorcontrib>Belmonte, T. ; Bernardelli, E.A. ; Mafra, M. ; Duday, D. ; Frache, G. ; Poncin-Epaillard, F. ; Noël, C. ; Choquet, P. ; Migeon, H.-N. ; Maliska, A.M.</creatorcontrib><description>The transformations undergone in a late Ar―O2 afterglow by the hexatriacontane, a long chain alkane, and the stearic acid, a C18 alkane skeleton with an acid function, are compared. The diffusion of molecular oxygen is found to be the limiting step in the case of the HTC. When the SA is treated, this process is fast, likely because of the high diffusion coefficient of O2 in the SA than in the HTC. Desorption of OH groups produced by the abstraction of one hydrogen from the alkane skeleton by an oxygen atom is proposed as the limiting step. The fragmentation process stands in the core of the material and creates by-products that are responsible for the appearance of bubbles whose mobility and coarsening depend on the viscosity of the treated material. Finally, by resorting to pulse mode, both the HTC and the SA can be etched whereas they are functionalized in the continuous mode where non-linear behaviours are observed.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2011.03.041</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alkane ; Applied sciences ; Cleaning. Degreasing. Pickling ; Cross-disciplinary physics: materials science; rheology ; Engineering Sciences ; Exact sciences and technology ; Hexatriacontane ; Materials science ; Metals. Metallurgy ; Physics ; Plasma cleaning ; Plasmas ; Post-discharge ; Production techniques ; Stearic acid ; Surface treatment ; Surface treatments</subject><ispartof>Surface &amp; coatings technology, 2011-07, Vol.205 (2), p.S443-S446</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-63f6d261f37052514d931b804854653b1c0ba392b013e8a8745e704a7a32f6a83</citedby><cites>FETCH-LOGICAL-c291t-63f6d261f37052514d931b804854653b1c0ba392b013e8a8745e704a7a32f6a83</cites><orcidid>0000-0001-5264-1203 ; 0000-0002-8572-7676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24412747$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02447129$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Belmonte, T.</creatorcontrib><creatorcontrib>Bernardelli, E.A.</creatorcontrib><creatorcontrib>Mafra, M.</creatorcontrib><creatorcontrib>Duday, D.</creatorcontrib><creatorcontrib>Frache, G.</creatorcontrib><creatorcontrib>Poncin-Epaillard, F.</creatorcontrib><creatorcontrib>Noël, C.</creatorcontrib><creatorcontrib>Choquet, P.</creatorcontrib><creatorcontrib>Migeon, H.-N.</creatorcontrib><creatorcontrib>Maliska, A.M.</creatorcontrib><title>Comparison between hexatriacontane and stearic acid behaviours under late Ar―O2 post-discharge</title><title>Surface &amp; coatings technology</title><description>The transformations undergone in a late Ar―O2 afterglow by the hexatriacontane, a long chain alkane, and the stearic acid, a C18 alkane skeleton with an acid function, are compared. The diffusion of molecular oxygen is found to be the limiting step in the case of the HTC. When the SA is treated, this process is fast, likely because of the high diffusion coefficient of O2 in the SA than in the HTC. Desorption of OH groups produced by the abstraction of one hydrogen from the alkane skeleton by an oxygen atom is proposed as the limiting step. The fragmentation process stands in the core of the material and creates by-products that are responsible for the appearance of bubbles whose mobility and coarsening depend on the viscosity of the treated material. Finally, by resorting to pulse mode, both the HTC and the SA can be etched whereas they are functionalized in the continuous mode where non-linear behaviours are observed.</description><subject>Alkane</subject><subject>Applied sciences</subject><subject>Cleaning. Degreasing. Pickling</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Hexatriacontane</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Plasma cleaning</subject><subject>Plasmas</subject><subject>Post-discharge</subject><subject>Production techniques</subject><subject>Stearic acid</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMGO0zAQhi0EEmXhFZAvHDgkzNhOnNyoKmCRKu0FzmbiTKirblzZboEbL8EL8iSkKuyV00ij75tf8wvxEqFGwPbNvs6nNPlIpVaAWIOuweAjscLO9pXWxj4WK1CNrbreqqfiWc57AEDbm5X4son3R0ohx1kOXL4xz3LH36mkQD7OhWaWNI8yF14oL8mHcQF3dA7xlLI8zSMneaDCcp1-__x1p-Qx5lKNIfsdpa_8XDyZ6JD5xd95Iz6_f_dpc1tt7z583Ky3lVc9lqrVUzuqFidtoVENmrHXOHRgusa0jR7Qw0C6VwOg5o46axq2YMiSVlNLnb4Rr693d3RwxxTuKf1wkYK7XW_dZQfKGIuqP-PCtlfWp5hz4ulBQHCXTt3e_evUXTp1oN3S6SK-uopHyp4OU6LZh_xgLwmorLEL9_bK8fLxOXBy2QeePY8hsS9ujOF_UX8ApqiQqg</recordid><startdate>20110725</startdate><enddate>20110725</enddate><creator>Belmonte, T.</creator><creator>Bernardelli, E.A.</creator><creator>Mafra, M.</creator><creator>Duday, D.</creator><creator>Frache, G.</creator><creator>Poncin-Epaillard, F.</creator><creator>Noël, C.</creator><creator>Choquet, P.</creator><creator>Migeon, H.-N.</creator><creator>Maliska, A.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5264-1203</orcidid><orcidid>https://orcid.org/0000-0002-8572-7676</orcidid></search><sort><creationdate>20110725</creationdate><title>Comparison between hexatriacontane and stearic acid behaviours under late Ar―O2 post-discharge</title><author>Belmonte, T. ; Bernardelli, E.A. ; Mafra, M. ; Duday, D. ; Frache, G. ; Poncin-Epaillard, F. ; Noël, C. ; Choquet, P. ; Migeon, H.-N. ; Maliska, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-63f6d261f37052514d931b804854653b1c0ba392b013e8a8745e704a7a32f6a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alkane</topic><topic>Applied sciences</topic><topic>Cleaning. Degreasing. Pickling</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Hexatriacontane</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Plasma cleaning</topic><topic>Plasmas</topic><topic>Post-discharge</topic><topic>Production techniques</topic><topic>Stearic acid</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belmonte, T.</creatorcontrib><creatorcontrib>Bernardelli, E.A.</creatorcontrib><creatorcontrib>Mafra, M.</creatorcontrib><creatorcontrib>Duday, D.</creatorcontrib><creatorcontrib>Frache, G.</creatorcontrib><creatorcontrib>Poncin-Epaillard, F.</creatorcontrib><creatorcontrib>Noël, C.</creatorcontrib><creatorcontrib>Choquet, P.</creatorcontrib><creatorcontrib>Migeon, H.-N.</creatorcontrib><creatorcontrib>Maliska, A.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belmonte, T.</au><au>Bernardelli, E.A.</au><au>Mafra, M.</au><au>Duday, D.</au><au>Frache, G.</au><au>Poncin-Epaillard, F.</au><au>Noël, C.</au><au>Choquet, P.</au><au>Migeon, H.-N.</au><au>Maliska, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison between hexatriacontane and stearic acid behaviours under late Ar―O2 post-discharge</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2011-07-25</date><risdate>2011</risdate><volume>205</volume><issue>2</issue><spage>S443</spage><epage>S446</epage><pages>S443-S446</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>The transformations undergone in a late Ar―O2 afterglow by the hexatriacontane, a long chain alkane, and the stearic acid, a C18 alkane skeleton with an acid function, are compared. The diffusion of molecular oxygen is found to be the limiting step in the case of the HTC. When the SA is treated, this process is fast, likely because of the high diffusion coefficient of O2 in the SA than in the HTC. Desorption of OH groups produced by the abstraction of one hydrogen from the alkane skeleton by an oxygen atom is proposed as the limiting step. The fragmentation process stands in the core of the material and creates by-products that are responsible for the appearance of bubbles whose mobility and coarsening depend on the viscosity of the treated material. Finally, by resorting to pulse mode, both the HTC and the SA can be etched whereas they are functionalized in the continuous mode where non-linear behaviours are observed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2011.03.041</doi><orcidid>https://orcid.org/0000-0001-5264-1203</orcidid><orcidid>https://orcid.org/0000-0002-8572-7676</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2011-07, Vol.205 (2), p.S443-S446
issn 0257-8972
1879-3347
language eng
recordid cdi_hal_primary_oai_HAL_hal_02447129v1
source Elsevier
subjects Alkane
Applied sciences
Cleaning. Degreasing. Pickling
Cross-disciplinary physics: materials science
rheology
Engineering Sciences
Exact sciences and technology
Hexatriacontane
Materials science
Metals. Metallurgy
Physics
Plasma cleaning
Plasmas
Post-discharge
Production techniques
Stearic acid
Surface treatment
Surface treatments
title Comparison between hexatriacontane and stearic acid behaviours under late Ar―O2 post-discharge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20between%20hexatriacontane%20and%20stearic%20acid%20behaviours%20under%20late%20Ar%E2%80%95O2%20post-discharge&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Belmonte,%20T.&rft.date=2011-07-25&rft.volume=205&rft.issue=2&rft.spage=S443&rft.epage=S446&rft.pages=S443-S446&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2011.03.041&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02447129v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-63f6d261f37052514d931b804854653b1c0ba392b013e8a8745e704a7a32f6a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true