Loading…

Quantifying the Uncertainty of a Coupled Plume and Tephra Dispersal Model: PLUME‐MOM/HYSPLIT Simulations Applied to Andean Volcanoes

Numerical modeling of tephra dispersal and deposition is essential for evaluation of volcanic hazards. Many models consider reasonable physical approximations in order to reduce computational times, but this may introduce a certain degree of uncertainty in the simulation outputs. The important step...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Solid earth 2020-02, Vol.125 (2), p.n/a
Main Authors: Tadini, A., Roche, O., Samaniego, P., Guillin, A., Azzaoui, N., Gouhier, M., Michieli Vitturi, M., Pardini, F., Eychenne, J., Bernard, B., Hidalgo, S., Le Pennec, J. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4020-8f80d1841a6cae03fd4e7cf5f51058710a14dc0009edf2a56693124eae14cfae3
cites cdi_FETCH-LOGICAL-a4020-8f80d1841a6cae03fd4e7cf5f51058710a14dc0009edf2a56693124eae14cfae3
container_end_page n/a
container_issue 2
container_start_page
container_title Journal of geophysical research. Solid earth
container_volume 125
creator Tadini, A.
Roche, O.
Samaniego, P.
Guillin, A.
Azzaoui, N.
Gouhier, M.
Michieli Vitturi, M.
Pardini, F.
Eychenne, J.
Bernard, B.
Hidalgo, S.
Le Pennec, J. L.
description Numerical modeling of tephra dispersal and deposition is essential for evaluation of volcanic hazards. Many models consider reasonable physical approximations in order to reduce computational times, but this may introduce a certain degree of uncertainty in the simulation outputs. The important step of uncertainty quantification is dealt in this paper with respect to a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT). The performances of this model are evaluated through simulations of four past eruptions of different magnitudes and styles from three Andean volcanoes, and the uncertainty is quantified by evaluating the differences between modeled and observed data of plume height (at different time steps above the vent) as well as mass loading and grain size at given stratigraphic sections. Different meteorological data sets were also tested and had a sensible influence on the model outputs. Other results highlight that the model tends to underestimate plume heights while overestimating mass loading values, especially for higher‐magnitude eruptions. Moreover, the advective part of HYSPLIT seems to work more efficiently than the diffusive part. Finally, though the coupled PLUME‐MoM/HYSPLIT model generally is less efficient in reproducing deposit grain sizes, we propose that it may be used for hazard map production for higher‐magnitude eruptions (sub‐Plinian or Plinian) for what concern mass loading. Key Points We present an uncertainty quantification for a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT) The model has been tested against field data of four eruptions from Andean volcanoes (in Ecuador and Chile) of different magnitudes/styles The main conclusion of the uncertainty quantification is that the model is best suited for hazard studies of higher‐magnitude eruptions
doi_str_mv 10.1029/2019JB018390
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02453781v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369367814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4020-8f80d1841a6cae03fd4e7cf5f51058710a14dc0009edf2a56693124eae14cfae3</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhZeSQEOSW3-AIKdA3Egr7Xq3N8d14pg1cRu70JMYdke1gixtpN0E33LKub-xvyQyLqGnzmWGx8djHi9JPjH6mdG0vEwpK2dXlBW8pB-So5Tl5aDkWX7wfjP-MTkN4YHGKaLExFHy-q0H22m11fYX6dZIVrZG34G23ZY4RYCMXd8abMjC9BskYBuyxHbtgXzVoUUfwJC5a9B8IYtqNZ_8efk9v5tfTn_eL6rbJbnXm95Ap50NZNS2RkenzpGRbRAs-eFMDdZhOEkOFZiAp3_3cbK6nizH00F1d3M7HlUDEDSlg0IVtGGFYJDXgJSrRuCwVpnKGM2KIaPARFPHeCU2KoUsz2PqVCAgE7UC5MfJ-d53DUa2Xm_Ab6UDLaejSu40moqMDwv2xCJ7tmdb7x57DJ18cL238T2Z8micR0xE6mJP1d6F4FG92zIqd8XIf4uJON_jz9rg9r-snN18v8p4mVH-BtKcjis</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369367814</pqid></control><display><type>article</type><title>Quantifying the Uncertainty of a Coupled Plume and Tephra Dispersal Model: PLUME‐MOM/HYSPLIT Simulations Applied to Andean Volcanoes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Tadini, A. ; Roche, O. ; Samaniego, P. ; Guillin, A. ; Azzaoui, N. ; Gouhier, M. ; Michieli Vitturi, M. ; Pardini, F. ; Eychenne, J. ; Bernard, B. ; Hidalgo, S. ; Le Pennec, J. L.</creator><creatorcontrib>Tadini, A. ; Roche, O. ; Samaniego, P. ; Guillin, A. ; Azzaoui, N. ; Gouhier, M. ; Michieli Vitturi, M. ; Pardini, F. ; Eychenne, J. ; Bernard, B. ; Hidalgo, S. ; Le Pennec, J. L.</creatorcontrib><description>Numerical modeling of tephra dispersal and deposition is essential for evaluation of volcanic hazards. Many models consider reasonable physical approximations in order to reduce computational times, but this may introduce a certain degree of uncertainty in the simulation outputs. The important step of uncertainty quantification is dealt in this paper with respect to a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT). The performances of this model are evaluated through simulations of four past eruptions of different magnitudes and styles from three Andean volcanoes, and the uncertainty is quantified by evaluating the differences between modeled and observed data of plume height (at different time steps above the vent) as well as mass loading and grain size at given stratigraphic sections. Different meteorological data sets were also tested and had a sensible influence on the model outputs. Other results highlight that the model tends to underestimate plume heights while overestimating mass loading values, especially for higher‐magnitude eruptions. Moreover, the advective part of HYSPLIT seems to work more efficiently than the diffusive part. Finally, though the coupled PLUME‐MoM/HYSPLIT model generally is less efficient in reproducing deposit grain sizes, we propose that it may be used for hazard map production for higher‐magnitude eruptions (sub‐Plinian or Plinian) for what concern mass loading. Key Points We present an uncertainty quantification for a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT) The model has been tested against field data of four eruptions from Andean volcanoes (in Ecuador and Chile) of different magnitudes/styles The main conclusion of the uncertainty quantification is that the model is best suited for hazard studies of higher‐magnitude eruptions</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2019JB018390</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Andean volcanoes ; Computer applications ; Computer simulation ; Dispersal ; Dispersion ; Earth Sciences ; Eruptions ; Geological hazards ; Geophysics ; Grain size ; Mass ; Meteorological data ; numerical modeling ; Particle size ; Sciences of the Universe ; Stratigraphy ; Tephra ; tephra dispersal ; tephra fall ; Uncertainty ; uncertainty quantification ; Volcanic activity ; Volcanoes ; Volcanology</subject><ispartof>Journal of geophysical research. Solid earth, 2020-02, Vol.125 (2), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4020-8f80d1841a6cae03fd4e7cf5f51058710a14dc0009edf2a56693124eae14cfae3</citedby><cites>FETCH-LOGICAL-a4020-8f80d1841a6cae03fd4e7cf5f51058710a14dc0009edf2a56693124eae14cfae3</cites><orcidid>0000-0002-0333-5493 ; 0000-0003-1169-3503 ; 0000-0003-3603-0853 ; 0000-0002-1543-5440 ; 0000-0002-6751-6904 ; 0000-0003-0344-6983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://uca.hal.science/hal-02453781$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tadini, A.</creatorcontrib><creatorcontrib>Roche, O.</creatorcontrib><creatorcontrib>Samaniego, P.</creatorcontrib><creatorcontrib>Guillin, A.</creatorcontrib><creatorcontrib>Azzaoui, N.</creatorcontrib><creatorcontrib>Gouhier, M.</creatorcontrib><creatorcontrib>Michieli Vitturi, M.</creatorcontrib><creatorcontrib>Pardini, F.</creatorcontrib><creatorcontrib>Eychenne, J.</creatorcontrib><creatorcontrib>Bernard, B.</creatorcontrib><creatorcontrib>Hidalgo, S.</creatorcontrib><creatorcontrib>Le Pennec, J. L.</creatorcontrib><title>Quantifying the Uncertainty of a Coupled Plume and Tephra Dispersal Model: PLUME‐MOM/HYSPLIT Simulations Applied to Andean Volcanoes</title><title>Journal of geophysical research. Solid earth</title><description>Numerical modeling of tephra dispersal and deposition is essential for evaluation of volcanic hazards. Many models consider reasonable physical approximations in order to reduce computational times, but this may introduce a certain degree of uncertainty in the simulation outputs. The important step of uncertainty quantification is dealt in this paper with respect to a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT). The performances of this model are evaluated through simulations of four past eruptions of different magnitudes and styles from three Andean volcanoes, and the uncertainty is quantified by evaluating the differences between modeled and observed data of plume height (at different time steps above the vent) as well as mass loading and grain size at given stratigraphic sections. Different meteorological data sets were also tested and had a sensible influence on the model outputs. Other results highlight that the model tends to underestimate plume heights while overestimating mass loading values, especially for higher‐magnitude eruptions. Moreover, the advective part of HYSPLIT seems to work more efficiently than the diffusive part. Finally, though the coupled PLUME‐MoM/HYSPLIT model generally is less efficient in reproducing deposit grain sizes, we propose that it may be used for hazard map production for higher‐magnitude eruptions (sub‐Plinian or Plinian) for what concern mass loading. Key Points We present an uncertainty quantification for a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT) The model has been tested against field data of four eruptions from Andean volcanoes (in Ecuador and Chile) of different magnitudes/styles The main conclusion of the uncertainty quantification is that the model is best suited for hazard studies of higher‐magnitude eruptions</description><subject>Andean volcanoes</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Earth Sciences</subject><subject>Eruptions</subject><subject>Geological hazards</subject><subject>Geophysics</subject><subject>Grain size</subject><subject>Mass</subject><subject>Meteorological data</subject><subject>numerical modeling</subject><subject>Particle size</subject><subject>Sciences of the Universe</subject><subject>Stratigraphy</subject><subject>Tephra</subject><subject>tephra dispersal</subject><subject>tephra fall</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><subject>Volcanic activity</subject><subject>Volcanoes</subject><subject>Volcanology</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrGzEQhZeSQEOSW3-AIKdA3Egr7Xq3N8d14pg1cRu70JMYdke1gixtpN0E33LKub-xvyQyLqGnzmWGx8djHi9JPjH6mdG0vEwpK2dXlBW8pB-So5Tl5aDkWX7wfjP-MTkN4YHGKaLExFHy-q0H22m11fYX6dZIVrZG34G23ZY4RYCMXd8abMjC9BskYBuyxHbtgXzVoUUfwJC5a9B8IYtqNZ_8efk9v5tfTn_eL6rbJbnXm95Ap50NZNS2RkenzpGRbRAs-eFMDdZhOEkOFZiAp3_3cbK6nizH00F1d3M7HlUDEDSlg0IVtGGFYJDXgJSrRuCwVpnKGM2KIaPARFPHeCU2KoUsz2PqVCAgE7UC5MfJ-d53DUa2Xm_Ab6UDLaejSu40moqMDwv2xCJ7tmdb7x57DJ18cL238T2Z8micR0xE6mJP1d6F4FG92zIqd8XIf4uJON_jz9rg9r-snN18v8p4mVH-BtKcjis</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Tadini, A.</creator><creator>Roche, O.</creator><creator>Samaniego, P.</creator><creator>Guillin, A.</creator><creator>Azzaoui, N.</creator><creator>Gouhier, M.</creator><creator>Michieli Vitturi, M.</creator><creator>Pardini, F.</creator><creator>Eychenne, J.</creator><creator>Bernard, B.</creator><creator>Hidalgo, S.</creator><creator>Le Pennec, J. L.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0333-5493</orcidid><orcidid>https://orcid.org/0000-0003-1169-3503</orcidid><orcidid>https://orcid.org/0000-0003-3603-0853</orcidid><orcidid>https://orcid.org/0000-0002-1543-5440</orcidid><orcidid>https://orcid.org/0000-0002-6751-6904</orcidid><orcidid>https://orcid.org/0000-0003-0344-6983</orcidid></search><sort><creationdate>202002</creationdate><title>Quantifying the Uncertainty of a Coupled Plume and Tephra Dispersal Model: PLUME‐MOM/HYSPLIT Simulations Applied to Andean Volcanoes</title><author>Tadini, A. ; Roche, O. ; Samaniego, P. ; Guillin, A. ; Azzaoui, N. ; Gouhier, M. ; Michieli Vitturi, M. ; Pardini, F. ; Eychenne, J. ; Bernard, B. ; Hidalgo, S. ; Le Pennec, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4020-8f80d1841a6cae03fd4e7cf5f51058710a14dc0009edf2a56693124eae14cfae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Andean volcanoes</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Earth Sciences</topic><topic>Eruptions</topic><topic>Geological hazards</topic><topic>Geophysics</topic><topic>Grain size</topic><topic>Mass</topic><topic>Meteorological data</topic><topic>numerical modeling</topic><topic>Particle size</topic><topic>Sciences of the Universe</topic><topic>Stratigraphy</topic><topic>Tephra</topic><topic>tephra dispersal</topic><topic>tephra fall</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><topic>Volcanic activity</topic><topic>Volcanoes</topic><topic>Volcanology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadini, A.</creatorcontrib><creatorcontrib>Roche, O.</creatorcontrib><creatorcontrib>Samaniego, P.</creatorcontrib><creatorcontrib>Guillin, A.</creatorcontrib><creatorcontrib>Azzaoui, N.</creatorcontrib><creatorcontrib>Gouhier, M.</creatorcontrib><creatorcontrib>Michieli Vitturi, M.</creatorcontrib><creatorcontrib>Pardini, F.</creatorcontrib><creatorcontrib>Eychenne, J.</creatorcontrib><creatorcontrib>Bernard, B.</creatorcontrib><creatorcontrib>Hidalgo, S.</creatorcontrib><creatorcontrib>Le Pennec, J. L.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tadini, A.</au><au>Roche, O.</au><au>Samaniego, P.</au><au>Guillin, A.</au><au>Azzaoui, N.</au><au>Gouhier, M.</au><au>Michieli Vitturi, M.</au><au>Pardini, F.</au><au>Eychenne, J.</au><au>Bernard, B.</au><au>Hidalgo, S.</au><au>Le Pennec, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Uncertainty of a Coupled Plume and Tephra Dispersal Model: PLUME‐MOM/HYSPLIT Simulations Applied to Andean Volcanoes</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2020-02</date><risdate>2020</risdate><volume>125</volume><issue>2</issue><epage>n/a</epage><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Numerical modeling of tephra dispersal and deposition is essential for evaluation of volcanic hazards. Many models consider reasonable physical approximations in order to reduce computational times, but this may introduce a certain degree of uncertainty in the simulation outputs. The important step of uncertainty quantification is dealt in this paper with respect to a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT). The performances of this model are evaluated through simulations of four past eruptions of different magnitudes and styles from three Andean volcanoes, and the uncertainty is quantified by evaluating the differences between modeled and observed data of plume height (at different time steps above the vent) as well as mass loading and grain size at given stratigraphic sections. Different meteorological data sets were also tested and had a sensible influence on the model outputs. Other results highlight that the model tends to underestimate plume heights while overestimating mass loading values, especially for higher‐magnitude eruptions. Moreover, the advective part of HYSPLIT seems to work more efficiently than the diffusive part. Finally, though the coupled PLUME‐MoM/HYSPLIT model generally is less efficient in reproducing deposit grain sizes, we propose that it may be used for hazard map production for higher‐magnitude eruptions (sub‐Plinian or Plinian) for what concern mass loading. Key Points We present an uncertainty quantification for a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT) The model has been tested against field data of four eruptions from Andean volcanoes (in Ecuador and Chile) of different magnitudes/styles The main conclusion of the uncertainty quantification is that the model is best suited for hazard studies of higher‐magnitude eruptions</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JB018390</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0333-5493</orcidid><orcidid>https://orcid.org/0000-0003-1169-3503</orcidid><orcidid>https://orcid.org/0000-0003-3603-0853</orcidid><orcidid>https://orcid.org/0000-0002-1543-5440</orcidid><orcidid>https://orcid.org/0000-0002-6751-6904</orcidid><orcidid>https://orcid.org/0000-0003-0344-6983</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2020-02, Vol.125 (2), p.n/a
issn 2169-9313
2169-9356
language eng
recordid cdi_hal_primary_oai_HAL_hal_02453781v1
source Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection
subjects Andean volcanoes
Computer applications
Computer simulation
Dispersal
Dispersion
Earth Sciences
Eruptions
Geological hazards
Geophysics
Grain size
Mass
Meteorological data
numerical modeling
Particle size
Sciences of the Universe
Stratigraphy
Tephra
tephra dispersal
tephra fall
Uncertainty
uncertainty quantification
Volcanic activity
Volcanoes
Volcanology
title Quantifying the Uncertainty of a Coupled Plume and Tephra Dispersal Model: PLUME‐MOM/HYSPLIT Simulations Applied to Andean Volcanoes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Uncertainty%20of%20a%20Coupled%20Plume%20and%20Tephra%20Dispersal%20Model:%20PLUME%E2%80%90MOM/HYSPLIT%20Simulations%20Applied%20to%20Andean%20Volcanoes&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Tadini,%20A.&rft.date=2020-02&rft.volume=125&rft.issue=2&rft.epage=n/a&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2019JB018390&rft_dat=%3Cproquest_hal_p%3E2369367814%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4020-8f80d1841a6cae03fd4e7cf5f51058710a14dc0009edf2a56693124eae14cfae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2369367814&rft_id=info:pmid/&rfr_iscdi=true