Loading…

A Counterexample to Hartogs’ Type Extension of Holomorphic Line Bundles

Consider a domain Ω in C n with n ⩾ 2 and a compact subset K ⊂ Ω such that Ω \ K is connected. We address the problem whether a holomorphic line bundle defined on Ω \ K extends to Ω . In 2013, Fornæss, Sibony, and Wold gave a positive answer in dimension n ⩾ 3 , when Ω is pseudoconvex and K is a sub...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2018-07, Vol.28 (3), p.2624-2643
Main Author: Chen, Zhangchi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-68554af0068a40633ba5dff000dbd8fbddda101b4c3c3f617dd0fed723a659fb3
cites cdi_FETCH-LOGICAL-c389t-68554af0068a40633ba5dff000dbd8fbddda101b4c3c3f617dd0fed723a659fb3
container_end_page 2643
container_issue 3
container_start_page 2624
container_title The Journal of geometric analysis
container_volume 28
creator Chen, Zhangchi
description Consider a domain Ω in C n with n ⩾ 2 and a compact subset K ⊂ Ω such that Ω \ K is connected. We address the problem whether a holomorphic line bundle defined on Ω \ K extends to Ω . In 2013, Fornæss, Sibony, and Wold gave a positive answer in dimension n ⩾ 3 , when Ω is pseudoconvex and K is a sublevel set of a strongly plurisubharmonic exhaustion function. However, for K of general shape, we construct counterexamples in any dimension n ⩾ 2 . The key is a certain gluing lemma by means of which we extend any two holomorphic line bundles which are isomorphic on the intersection of their base spaces.
doi_str_mv 10.1007/s12220-017-9923-z
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02455026v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2077517516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-68554af0068a40633ba5dff000dbd8fbddda101b4c3c3f617dd0fed723a659fb3</originalsourceid><addsrcrecordid>eNp1kN9KwzAUxosoOKcP4F3AKy-qJ0mTrpdzTDsYeDPBu5A2ydbRNTXpZNuVr-Hr-SRmVPRKOHD-8Ps-Dl8UXWO4wwDpvceEEIgBp3GWERofTqIBZiyLAcjraZiBQcwzws-jC-_XAAmnSTqIZmM0sdum007v5KatNeosyqXr7NJ_fXyixb7VaLrrdOMr2yBrUG5ru7GuXVUlmleNRg_bRtXaX0ZnRtZeX_30YfTyOF1M8nj-_DSbjOdxSUdZF_MRY4k0AHwkE-CUFpIpE3ZQhRqZQiklMeAiKWlJDcepUmC0SgmVnGWmoMPotvddyVq0rtpItxdWViIfz8XxBiRhDAh_x4G96dnW2bet9p1Y261rwnuCQJoyHIoHCvdU6az3TptfWwzimK7o0xUhXXFMVxyChvQaH9hmqd2f8_-ib6A7fZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2077517516</pqid></control><display><type>article</type><title>A Counterexample to Hartogs’ Type Extension of Holomorphic Line Bundles</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Chen, Zhangchi</creator><creatorcontrib>Chen, Zhangchi</creatorcontrib><description>Consider a domain Ω in C n with n ⩾ 2 and a compact subset K ⊂ Ω such that Ω \ K is connected. We address the problem whether a holomorphic line bundle defined on Ω \ K extends to Ω . In 2013, Fornæss, Sibony, and Wold gave a positive answer in dimension n ⩾ 3 , when Ω is pseudoconvex and K is a sublevel set of a strongly plurisubharmonic exhaustion function. However, for K of general shape, we construct counterexamples in any dimension n ⩾ 2 . The key is a certain gluing lemma by means of which we extend any two holomorphic line bundles which are isomorphic on the intersection of their base spaces.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-017-9923-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Bundles ; Bundling ; Complex Variables ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Exhaustion ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Gluing ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2018-07, Vol.28 (3), p.2624-2643</ispartof><rights>Mathematica Josephina, Inc. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-68554af0068a40633ba5dff000dbd8fbddda101b4c3c3f617dd0fed723a659fb3</citedby><cites>FETCH-LOGICAL-c389t-68554af0068a40633ba5dff000dbd8fbddda101b4c3c3f617dd0fed723a659fb3</cites><orcidid>0000-0003-4475-849X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02455026$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhangchi</creatorcontrib><title>A Counterexample to Hartogs’ Type Extension of Holomorphic Line Bundles</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>Consider a domain Ω in C n with n ⩾ 2 and a compact subset K ⊂ Ω such that Ω \ K is connected. We address the problem whether a holomorphic line bundle defined on Ω \ K extends to Ω . In 2013, Fornæss, Sibony, and Wold gave a positive answer in dimension n ⩾ 3 , when Ω is pseudoconvex and K is a sublevel set of a strongly plurisubharmonic exhaustion function. However, for K of general shape, we construct counterexamples in any dimension n ⩾ 2 . The key is a certain gluing lemma by means of which we extend any two holomorphic line bundles which are isomorphic on the intersection of their base spaces.</description><subject>Abstract Harmonic Analysis</subject><subject>Bundles</subject><subject>Bundling</subject><subject>Complex Variables</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Exhaustion</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Gluing</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kN9KwzAUxosoOKcP4F3AKy-qJ0mTrpdzTDsYeDPBu5A2ydbRNTXpZNuVr-Hr-SRmVPRKOHD-8Ps-Dl8UXWO4wwDpvceEEIgBp3GWERofTqIBZiyLAcjraZiBQcwzws-jC-_XAAmnSTqIZmM0sdum007v5KatNeosyqXr7NJ_fXyixb7VaLrrdOMr2yBrUG5ru7GuXVUlmleNRg_bRtXaX0ZnRtZeX_30YfTyOF1M8nj-_DSbjOdxSUdZF_MRY4k0AHwkE-CUFpIpE3ZQhRqZQiklMeAiKWlJDcepUmC0SgmVnGWmoMPotvddyVq0rtpItxdWViIfz8XxBiRhDAh_x4G96dnW2bet9p1Y261rwnuCQJoyHIoHCvdU6az3TptfWwzimK7o0xUhXXFMVxyChvQaH9hmqd2f8_-ib6A7fZ0</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Chen, Zhangchi</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4475-849X</orcidid></search><sort><creationdate>20180701</creationdate><title>A Counterexample to Hartogs’ Type Extension of Holomorphic Line Bundles</title><author>Chen, Zhangchi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-68554af0068a40633ba5dff000dbd8fbddda101b4c3c3f617dd0fed723a659fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Bundles</topic><topic>Bundling</topic><topic>Complex Variables</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Exhaustion</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Gluing</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhangchi</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhangchi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Counterexample to Hartogs’ Type Extension of Holomorphic Line Bundles</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>2624</spage><epage>2643</epage><pages>2624-2643</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>Consider a domain Ω in C n with n ⩾ 2 and a compact subset K ⊂ Ω such that Ω \ K is connected. We address the problem whether a holomorphic line bundle defined on Ω \ K extends to Ω . In 2013, Fornæss, Sibony, and Wold gave a positive answer in dimension n ⩾ 3 , when Ω is pseudoconvex and K is a sublevel set of a strongly plurisubharmonic exhaustion function. However, for K of general shape, we construct counterexamples in any dimension n ⩾ 2 . The key is a certain gluing lemma by means of which we extend any two holomorphic line bundles which are isomorphic on the intersection of their base spaces.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-017-9923-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4475-849X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2018-07, Vol.28 (3), p.2624-2643
issn 1050-6926
1559-002X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02455026v1
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Abstract Harmonic Analysis
Bundles
Bundling
Complex Variables
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Exhaustion
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Gluing
Mathematical analysis
Mathematics
Mathematics and Statistics
title A Counterexample to Hartogs’ Type Extension of Holomorphic Line Bundles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Counterexample%20to%20Hartogs%E2%80%99%20Type%20Extension%20of%20Holomorphic%20Line%20Bundles&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Chen,%20Zhangchi&rft.date=2018-07-01&rft.volume=28&rft.issue=3&rft.spage=2624&rft.epage=2643&rft.pages=2624-2643&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-017-9923-z&rft_dat=%3Cproquest_hal_p%3E2077517516%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-68554af0068a40633ba5dff000dbd8fbddda101b4c3c3f617dd0fed723a659fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2077517516&rft_id=info:pmid/&rfr_iscdi=true