Loading…
Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process
Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS exp...
Saved in:
Published in: | Journal of sol-gel science and technology 2019-04, Vol.90 (1), p.113-125 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093 |
container_end_page | 125 |
container_issue | 1 |
container_start_page | 113 |
container_title | Journal of sol-gel science and technology |
container_volume | 90 |
creator | Larreal de Hernandez, Lismarihen Anez-Borges, Liz Woignier, Thierry Hafidi Alaoui, Adil Calas-Etienne, Sylvie Despetis, Florence Bonnet, Laurent Colaiocco, Bruno Tahir, Saïd Dieudonné-George, Philippe |
description | Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS experiments, N
2
adsorption–desorption, and SEM techniques to determine the textural and structural properties of these porous materials. For both the TW and LW composites, it was shown that a macroporosity and a mesoporosity coexist. We argue that the proportion of macroporosity directly depends on the proportion of wollastonite fillers in the composite. We propose a unique two-stage drying mechanism to explain the formation of macropores. We additionally found that the surface of wollastonite fillers was covered by a dense multilayer packing of silica colloids in LUDOX LW xerocomposites. We believe that these surface-modified wollastonite fillers could improve the carbonation kinetics of wollastonite when used as a precursor for aqueous mineral carbonation, a promising route for safe and durable carbon sequestration.
SEM image of wollastonite fillers covered by silica in a LUDOX–wollastonite composite (left), and schematic representation of the dense coating of colloidal silica particles at the surface of wollastonite fillers in LUDOX–wollastonite composites (right)
Highlights
Silica–wollastonite xerogel-composites (xerocomposites) were prepared.
TEOS–wollastonite and LUDOX–wollastonite xerogels show porosity at two different scales, a macroporosity and a mesoporosity as confirmed from macroscopic and N
2
adsorption–desorption measurements.
SAXS, SEM, and N
2
adsorption–desorption measurements reveal that the wollastonite filler surface is covered by a dense coating of silica colloidal particles in LUDOX–wollastonite xerocomposites. |
doi_str_mv | 10.1007/s10971-018-4874-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02464294v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215571122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqXwAGyWmBgC_kucjFUFFKkSQ9ktx7HbVGkdfBN-Nt6BN-RJcAiCieH62tZ3jo4OQueUXFFC5DVQUkiaEJonIpciKQ7QhKaSx5fIDtGEFCxPiCTyGJ0AbAkhqaBygjarPjhtLNb7Crc--B5wZ1-7PugGt8G3NnS1Bewdhrqpjf58_3jxTaOh8_u6s9j4Xesh3iDittXBVrh8w-CbSK7tt4mxAKfoyOkG7NnPnqLV7c3jfJEsH-7u57NlYnjOusSVtjS6FLTQpuQsz0yeE15VjvOUU1uUUossnoynOrOSx3FFmVdOZhUp-BRdjq4b3ag21Dsd3pTXtVrMlmr4I0xkghXimUX2YmRjwqfeQqe2vg_7GE4xRtNUUsoGio6UCR4gWPdrS4kaqldj9SpWr4bq1ZCCjRqI7H5tw5_z_6IvKiGKWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215571122</pqid></control><display><type>article</type><title>Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process</title><source>Springer Link</source><creator>Larreal de Hernandez, Lismarihen ; Anez-Borges, Liz ; Woignier, Thierry ; Hafidi Alaoui, Adil ; Calas-Etienne, Sylvie ; Despetis, Florence ; Bonnet, Laurent ; Colaiocco, Bruno ; Tahir, Saïd ; Dieudonné-George, Philippe</creator><creatorcontrib>Larreal de Hernandez, Lismarihen ; Anez-Borges, Liz ; Woignier, Thierry ; Hafidi Alaoui, Adil ; Calas-Etienne, Sylvie ; Despetis, Florence ; Bonnet, Laurent ; Colaiocco, Bruno ; Tahir, Saïd ; Dieudonné-George, Philippe</creatorcontrib><description>Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS experiments, N
2
adsorption–desorption, and SEM techniques to determine the textural and structural properties of these porous materials. For both the TW and LW composites, it was shown that a macroporosity and a mesoporosity coexist. We argue that the proportion of macroporosity directly depends on the proportion of wollastonite fillers in the composite. We propose a unique two-stage drying mechanism to explain the formation of macropores. We additionally found that the surface of wollastonite fillers was covered by a dense multilayer packing of silica colloids in LUDOX LW xerocomposites. We believe that these surface-modified wollastonite fillers could improve the carbonation kinetics of wollastonite when used as a precursor for aqueous mineral carbonation, a promising route for safe and durable carbon sequestration.
SEM image of wollastonite fillers covered by silica in a LUDOX–wollastonite composite (left), and schematic representation of the dense coating of colloidal silica particles at the surface of wollastonite fillers in LUDOX–wollastonite composites (right)
Highlights
Silica–wollastonite xerogel-composites (xerocomposites) were prepared.
TEOS–wollastonite and LUDOX–wollastonite xerogels show porosity at two different scales, a macroporosity and a mesoporosity as confirmed from macroscopic and N
2
adsorption–desorption measurements.
SAXS, SEM, and N
2
adsorption–desorption measurements reveal that the wollastonite filler surface is covered by a dense coating of silica colloidal particles in LUDOX–wollastonite xerocomposites.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-018-4874-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon sequestration ; Carbonation ; Ceramics ; Chemical Sciences ; Chemistry and Materials Science ; Composite materials ; Composites ; Drying ; Fillers ; Gels ; Glass ; Inorganic Chemistry ; Ludox (trademark) ; Macroporosity ; Material chemistry ; Materials Science ; Multilayers ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Sol–gel and hybrid materials with surface modification for applications ; Porous materials ; Precursors ; Silica gel ; Silicon dioxide ; Sol-gel processes ; Wollastonite</subject><ispartof>Journal of sol-gel science and technology, 2019-04, Vol.90 (1), p.113-125</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018. corrected publication 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093</cites><orcidid>0000-0002-3280-6303 ; 0000-0002-2977-3555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02464294$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Larreal de Hernandez, Lismarihen</creatorcontrib><creatorcontrib>Anez-Borges, Liz</creatorcontrib><creatorcontrib>Woignier, Thierry</creatorcontrib><creatorcontrib>Hafidi Alaoui, Adil</creatorcontrib><creatorcontrib>Calas-Etienne, Sylvie</creatorcontrib><creatorcontrib>Despetis, Florence</creatorcontrib><creatorcontrib>Bonnet, Laurent</creatorcontrib><creatorcontrib>Colaiocco, Bruno</creatorcontrib><creatorcontrib>Tahir, Saïd</creatorcontrib><creatorcontrib>Dieudonné-George, Philippe</creatorcontrib><title>Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS experiments, N
2
adsorption–desorption, and SEM techniques to determine the textural and structural properties of these porous materials. For both the TW and LW composites, it was shown that a macroporosity and a mesoporosity coexist. We argue that the proportion of macroporosity directly depends on the proportion of wollastonite fillers in the composite. We propose a unique two-stage drying mechanism to explain the formation of macropores. We additionally found that the surface of wollastonite fillers was covered by a dense multilayer packing of silica colloids in LUDOX LW xerocomposites. We believe that these surface-modified wollastonite fillers could improve the carbonation kinetics of wollastonite when used as a precursor for aqueous mineral carbonation, a promising route for safe and durable carbon sequestration.
SEM image of wollastonite fillers covered by silica in a LUDOX–wollastonite composite (left), and schematic representation of the dense coating of colloidal silica particles at the surface of wollastonite fillers in LUDOX–wollastonite composites (right)
Highlights
Silica–wollastonite xerogel-composites (xerocomposites) were prepared.
TEOS–wollastonite and LUDOX–wollastonite xerogels show porosity at two different scales, a macroporosity and a mesoporosity as confirmed from macroscopic and N
2
adsorption–desorption measurements.
SAXS, SEM, and N
2
adsorption–desorption measurements reveal that the wollastonite filler surface is covered by a dense coating of silica colloidal particles in LUDOX–wollastonite xerocomposites.</description><subject>Carbon sequestration</subject><subject>Carbonation</subject><subject>Ceramics</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Drying</subject><subject>Fillers</subject><subject>Gels</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Ludox (trademark)</subject><subject>Macroporosity</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Sol–gel and hybrid materials with surface modification for applications</subject><subject>Porous materials</subject><subject>Precursors</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Wollastonite</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqXwAGyWmBgC_kucjFUFFKkSQ9ktx7HbVGkdfBN-Nt6BN-RJcAiCieH62tZ3jo4OQueUXFFC5DVQUkiaEJonIpciKQ7QhKaSx5fIDtGEFCxPiCTyGJ0AbAkhqaBygjarPjhtLNb7Crc--B5wZ1-7PugGt8G3NnS1Bewdhrqpjf58_3jxTaOh8_u6s9j4Xesh3iDittXBVrh8w-CbSK7tt4mxAKfoyOkG7NnPnqLV7c3jfJEsH-7u57NlYnjOusSVtjS6FLTQpuQsz0yeE15VjvOUU1uUUossnoynOrOSx3FFmVdOZhUp-BRdjq4b3ag21Dsd3pTXtVrMlmr4I0xkghXimUX2YmRjwqfeQqe2vg_7GE4xRtNUUsoGio6UCR4gWPdrS4kaqldj9SpWr4bq1ZCCjRqI7H5tw5_z_6IvKiGKWQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Larreal de Hernandez, Lismarihen</creator><creator>Anez-Borges, Liz</creator><creator>Woignier, Thierry</creator><creator>Hafidi Alaoui, Adil</creator><creator>Calas-Etienne, Sylvie</creator><creator>Despetis, Florence</creator><creator>Bonnet, Laurent</creator><creator>Colaiocco, Bruno</creator><creator>Tahir, Saïd</creator><creator>Dieudonné-George, Philippe</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3280-6303</orcidid><orcidid>https://orcid.org/0000-0002-2977-3555</orcidid></search><sort><creationdate>20190401</creationdate><title>Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process</title><author>Larreal de Hernandez, Lismarihen ; Anez-Borges, Liz ; Woignier, Thierry ; Hafidi Alaoui, Adil ; Calas-Etienne, Sylvie ; Despetis, Florence ; Bonnet, Laurent ; Colaiocco, Bruno ; Tahir, Saïd ; Dieudonné-George, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon sequestration</topic><topic>Carbonation</topic><topic>Ceramics</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Drying</topic><topic>Fillers</topic><topic>Gels</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Ludox (trademark)</topic><topic>Macroporosity</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Sol–gel and hybrid materials with surface modification for applications</topic><topic>Porous materials</topic><topic>Precursors</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Wollastonite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larreal de Hernandez, Lismarihen</creatorcontrib><creatorcontrib>Anez-Borges, Liz</creatorcontrib><creatorcontrib>Woignier, Thierry</creatorcontrib><creatorcontrib>Hafidi Alaoui, Adil</creatorcontrib><creatorcontrib>Calas-Etienne, Sylvie</creatorcontrib><creatorcontrib>Despetis, Florence</creatorcontrib><creatorcontrib>Bonnet, Laurent</creatorcontrib><creatorcontrib>Colaiocco, Bruno</creatorcontrib><creatorcontrib>Tahir, Saïd</creatorcontrib><creatorcontrib>Dieudonné-George, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larreal de Hernandez, Lismarihen</au><au>Anez-Borges, Liz</au><au>Woignier, Thierry</au><au>Hafidi Alaoui, Adil</au><au>Calas-Etienne, Sylvie</au><au>Despetis, Florence</au><au>Bonnet, Laurent</au><au>Colaiocco, Bruno</au><au>Tahir, Saïd</au><au>Dieudonné-George, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>90</volume><issue>1</issue><spage>113</spage><epage>125</epage><pages>113-125</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS experiments, N
2
adsorption–desorption, and SEM techniques to determine the textural and structural properties of these porous materials. For both the TW and LW composites, it was shown that a macroporosity and a mesoporosity coexist. We argue that the proportion of macroporosity directly depends on the proportion of wollastonite fillers in the composite. We propose a unique two-stage drying mechanism to explain the formation of macropores. We additionally found that the surface of wollastonite fillers was covered by a dense multilayer packing of silica colloids in LUDOX LW xerocomposites. We believe that these surface-modified wollastonite fillers could improve the carbonation kinetics of wollastonite when used as a precursor for aqueous mineral carbonation, a promising route for safe and durable carbon sequestration.
SEM image of wollastonite fillers covered by silica in a LUDOX–wollastonite composite (left), and schematic representation of the dense coating of colloidal silica particles at the surface of wollastonite fillers in LUDOX–wollastonite composites (right)
Highlights
Silica–wollastonite xerogel-composites (xerocomposites) were prepared.
TEOS–wollastonite and LUDOX–wollastonite xerogels show porosity at two different scales, a macroporosity and a mesoporosity as confirmed from macroscopic and N
2
adsorption–desorption measurements.
SAXS, SEM, and N
2
adsorption–desorption measurements reveal that the wollastonite filler surface is covered by a dense coating of silica colloidal particles in LUDOX–wollastonite xerocomposites.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-018-4874-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3280-6303</orcidid><orcidid>https://orcid.org/0000-0002-2977-3555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2019-04, Vol.90 (1), p.113-125 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02464294v2 |
source | Springer Link |
subjects | Carbon sequestration Carbonation Ceramics Chemical Sciences Chemistry and Materials Science Composite materials Composites Drying Fillers Gels Glass Inorganic Chemistry Ludox (trademark) Macroporosity Material chemistry Materials Science Multilayers Nanotechnology Natural Materials Optical and Electronic Materials Original Paper: Sol–gel and hybrid materials with surface modification for applications Porous materials Precursors Silica gel Silicon dioxide Sol-gel processes Wollastonite |
title | Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20and%20porous%20textural%20properties%20of%20silica%E2%80%93wollastonite%20composites%20prepared%20by%20sol%E2%80%93gel%20process&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Larreal%20de%20Hernandez,%20Lismarihen&rft.date=2019-04-01&rft.volume=90&rft.issue=1&rft.spage=113&rft.epage=125&rft.pages=113-125&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-018-4874-9&rft_dat=%3Cproquest_hal_p%3E2215571122%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215571122&rft_id=info:pmid/&rfr_iscdi=true |