Loading…

Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process

Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS exp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sol-gel science and technology 2019-04, Vol.90 (1), p.113-125
Main Authors: Larreal de Hernandez, Lismarihen, Anez-Borges, Liz, Woignier, Thierry, Hafidi Alaoui, Adil, Calas-Etienne, Sylvie, Despetis, Florence, Bonnet, Laurent, Colaiocco, Bruno, Tahir, Saïd, Dieudonné-George, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093
container_end_page 125
container_issue 1
container_start_page 113
container_title Journal of sol-gel science and technology
container_volume 90
creator Larreal de Hernandez, Lismarihen
Anez-Borges, Liz
Woignier, Thierry
Hafidi Alaoui, Adil
Calas-Etienne, Sylvie
Despetis, Florence
Bonnet, Laurent
Colaiocco, Bruno
Tahir, Saïd
Dieudonné-George, Philippe
description Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS experiments, N 2 adsorption–desorption, and SEM techniques to determine the textural and structural properties of these porous materials. For both the TW and LW composites, it was shown that a macroporosity and a mesoporosity coexist. We argue that the proportion of macroporosity directly depends on the proportion of wollastonite fillers in the composite. We propose a unique two-stage drying mechanism to explain the formation of macropores. We additionally found that the surface of wollastonite fillers was covered by a dense multilayer packing of silica colloids in LUDOX LW xerocomposites. We believe that these surface-modified wollastonite fillers could improve the carbonation kinetics of wollastonite when used as a precursor for aqueous mineral carbonation, a promising route for safe and durable carbon sequestration. SEM image of wollastonite fillers covered by silica in a LUDOX–wollastonite composite (left), and schematic representation of the dense coating of colloidal silica particles at the surface of wollastonite fillers in LUDOX–wollastonite composites (right) Highlights Silica–wollastonite xerogel-composites (xerocomposites) were prepared. TEOS–wollastonite and LUDOX–wollastonite xerogels show porosity at two different scales, a macroporosity and a mesoporosity as confirmed from macroscopic and N 2 adsorption–desorption measurements. SAXS, SEM, and N 2 adsorption–desorption measurements reveal that the wollastonite filler surface is covered by a dense coating of silica colloidal particles in LUDOX–wollastonite xerocomposites.
doi_str_mv 10.1007/s10971-018-4874-9
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02464294v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215571122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqXwAGyWmBgC_kucjFUFFKkSQ9ktx7HbVGkdfBN-Nt6BN-RJcAiCieH62tZ3jo4OQueUXFFC5DVQUkiaEJonIpciKQ7QhKaSx5fIDtGEFCxPiCTyGJ0AbAkhqaBygjarPjhtLNb7Crc--B5wZ1-7PugGt8G3NnS1Bewdhrqpjf58_3jxTaOh8_u6s9j4Xesh3iDittXBVrh8w-CbSK7tt4mxAKfoyOkG7NnPnqLV7c3jfJEsH-7u57NlYnjOusSVtjS6FLTQpuQsz0yeE15VjvOUU1uUUossnoynOrOSx3FFmVdOZhUp-BRdjq4b3ag21Dsd3pTXtVrMlmr4I0xkghXimUX2YmRjwqfeQqe2vg_7GE4xRtNUUsoGio6UCR4gWPdrS4kaqldj9SpWr4bq1ZCCjRqI7H5tw5_z_6IvKiGKWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215571122</pqid></control><display><type>article</type><title>Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process</title><source>Springer Link</source><creator>Larreal de Hernandez, Lismarihen ; Anez-Borges, Liz ; Woignier, Thierry ; Hafidi Alaoui, Adil ; Calas-Etienne, Sylvie ; Despetis, Florence ; Bonnet, Laurent ; Colaiocco, Bruno ; Tahir, Saïd ; Dieudonné-George, Philippe</creator><creatorcontrib>Larreal de Hernandez, Lismarihen ; Anez-Borges, Liz ; Woignier, Thierry ; Hafidi Alaoui, Adil ; Calas-Etienne, Sylvie ; Despetis, Florence ; Bonnet, Laurent ; Colaiocco, Bruno ; Tahir, Saïd ; Dieudonné-George, Philippe</creatorcontrib><description>Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS experiments, N 2 adsorption–desorption, and SEM techniques to determine the textural and structural properties of these porous materials. For both the TW and LW composites, it was shown that a macroporosity and a mesoporosity coexist. We argue that the proportion of macroporosity directly depends on the proportion of wollastonite fillers in the composite. We propose a unique two-stage drying mechanism to explain the formation of macropores. We additionally found that the surface of wollastonite fillers was covered by a dense multilayer packing of silica colloids in LUDOX LW xerocomposites. We believe that these surface-modified wollastonite fillers could improve the carbonation kinetics of wollastonite when used as a precursor for aqueous mineral carbonation, a promising route for safe and durable carbon sequestration. SEM image of wollastonite fillers covered by silica in a LUDOX–wollastonite composite (left), and schematic representation of the dense coating of colloidal silica particles at the surface of wollastonite fillers in LUDOX–wollastonite composites (right) Highlights Silica–wollastonite xerogel-composites (xerocomposites) were prepared. TEOS–wollastonite and LUDOX–wollastonite xerogels show porosity at two different scales, a macroporosity and a mesoporosity as confirmed from macroscopic and N 2 adsorption–desorption measurements. SAXS, SEM, and N 2 adsorption–desorption measurements reveal that the wollastonite filler surface is covered by a dense coating of silica colloidal particles in LUDOX–wollastonite xerocomposites.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-018-4874-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon sequestration ; Carbonation ; Ceramics ; Chemical Sciences ; Chemistry and Materials Science ; Composite materials ; Composites ; Drying ; Fillers ; Gels ; Glass ; Inorganic Chemistry ; Ludox (trademark) ; Macroporosity ; Material chemistry ; Materials Science ; Multilayers ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Sol–gel and hybrid materials with surface modification for applications ; Porous materials ; Precursors ; Silica gel ; Silicon dioxide ; Sol-gel processes ; Wollastonite</subject><ispartof>Journal of sol-gel science and technology, 2019-04, Vol.90 (1), p.113-125</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018. corrected publication 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093</cites><orcidid>0000-0002-3280-6303 ; 0000-0002-2977-3555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02464294$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Larreal de Hernandez, Lismarihen</creatorcontrib><creatorcontrib>Anez-Borges, Liz</creatorcontrib><creatorcontrib>Woignier, Thierry</creatorcontrib><creatorcontrib>Hafidi Alaoui, Adil</creatorcontrib><creatorcontrib>Calas-Etienne, Sylvie</creatorcontrib><creatorcontrib>Despetis, Florence</creatorcontrib><creatorcontrib>Bonnet, Laurent</creatorcontrib><creatorcontrib>Colaiocco, Bruno</creatorcontrib><creatorcontrib>Tahir, Saïd</creatorcontrib><creatorcontrib>Dieudonné-George, Philippe</creatorcontrib><title>Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS experiments, N 2 adsorption–desorption, and SEM techniques to determine the textural and structural properties of these porous materials. For both the TW and LW composites, it was shown that a macroporosity and a mesoporosity coexist. We argue that the proportion of macroporosity directly depends on the proportion of wollastonite fillers in the composite. We propose a unique two-stage drying mechanism to explain the formation of macropores. We additionally found that the surface of wollastonite fillers was covered by a dense multilayer packing of silica colloids in LUDOX LW xerocomposites. We believe that these surface-modified wollastonite fillers could improve the carbonation kinetics of wollastonite when used as a precursor for aqueous mineral carbonation, a promising route for safe and durable carbon sequestration. SEM image of wollastonite fillers covered by silica in a LUDOX–wollastonite composite (left), and schematic representation of the dense coating of colloidal silica particles at the surface of wollastonite fillers in LUDOX–wollastonite composites (right) Highlights Silica–wollastonite xerogel-composites (xerocomposites) were prepared. TEOS–wollastonite and LUDOX–wollastonite xerogels show porosity at two different scales, a macroporosity and a mesoporosity as confirmed from macroscopic and N 2 adsorption–desorption measurements. SAXS, SEM, and N 2 adsorption–desorption measurements reveal that the wollastonite filler surface is covered by a dense coating of silica colloidal particles in LUDOX–wollastonite xerocomposites.</description><subject>Carbon sequestration</subject><subject>Carbonation</subject><subject>Ceramics</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Drying</subject><subject>Fillers</subject><subject>Gels</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Ludox (trademark)</subject><subject>Macroporosity</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Sol–gel and hybrid materials with surface modification for applications</subject><subject>Porous materials</subject><subject>Precursors</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Wollastonite</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqXwAGyWmBgC_kucjFUFFKkSQ9ktx7HbVGkdfBN-Nt6BN-RJcAiCieH62tZ3jo4OQueUXFFC5DVQUkiaEJonIpciKQ7QhKaSx5fIDtGEFCxPiCTyGJ0AbAkhqaBygjarPjhtLNb7Crc--B5wZ1-7PugGt8G3NnS1Bewdhrqpjf58_3jxTaOh8_u6s9j4Xesh3iDittXBVrh8w-CbSK7tt4mxAKfoyOkG7NnPnqLV7c3jfJEsH-7u57NlYnjOusSVtjS6FLTQpuQsz0yeE15VjvOUU1uUUossnoynOrOSx3FFmVdOZhUp-BRdjq4b3ag21Dsd3pTXtVrMlmr4I0xkghXimUX2YmRjwqfeQqe2vg_7GE4xRtNUUsoGio6UCR4gWPdrS4kaqldj9SpWr4bq1ZCCjRqI7H5tw5_z_6IvKiGKWQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Larreal de Hernandez, Lismarihen</creator><creator>Anez-Borges, Liz</creator><creator>Woignier, Thierry</creator><creator>Hafidi Alaoui, Adil</creator><creator>Calas-Etienne, Sylvie</creator><creator>Despetis, Florence</creator><creator>Bonnet, Laurent</creator><creator>Colaiocco, Bruno</creator><creator>Tahir, Saïd</creator><creator>Dieudonné-George, Philippe</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3280-6303</orcidid><orcidid>https://orcid.org/0000-0002-2977-3555</orcidid></search><sort><creationdate>20190401</creationdate><title>Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process</title><author>Larreal de Hernandez, Lismarihen ; Anez-Borges, Liz ; Woignier, Thierry ; Hafidi Alaoui, Adil ; Calas-Etienne, Sylvie ; Despetis, Florence ; Bonnet, Laurent ; Colaiocco, Bruno ; Tahir, Saïd ; Dieudonné-George, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon sequestration</topic><topic>Carbonation</topic><topic>Ceramics</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Drying</topic><topic>Fillers</topic><topic>Gels</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Ludox (trademark)</topic><topic>Macroporosity</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Sol–gel and hybrid materials with surface modification for applications</topic><topic>Porous materials</topic><topic>Precursors</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Wollastonite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larreal de Hernandez, Lismarihen</creatorcontrib><creatorcontrib>Anez-Borges, Liz</creatorcontrib><creatorcontrib>Woignier, Thierry</creatorcontrib><creatorcontrib>Hafidi Alaoui, Adil</creatorcontrib><creatorcontrib>Calas-Etienne, Sylvie</creatorcontrib><creatorcontrib>Despetis, Florence</creatorcontrib><creatorcontrib>Bonnet, Laurent</creatorcontrib><creatorcontrib>Colaiocco, Bruno</creatorcontrib><creatorcontrib>Tahir, Saïd</creatorcontrib><creatorcontrib>Dieudonné-George, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larreal de Hernandez, Lismarihen</au><au>Anez-Borges, Liz</au><au>Woignier, Thierry</au><au>Hafidi Alaoui, Adil</au><au>Calas-Etienne, Sylvie</au><au>Despetis, Florence</au><au>Bonnet, Laurent</au><au>Colaiocco, Bruno</au><au>Tahir, Saïd</au><au>Dieudonné-George, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>90</volume><issue>1</issue><spage>113</spage><epage>125</epage><pages>113-125</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Silica–wollastonite xerogel composites (xerocomposites) with different wollastonite filler content were obtained after classical drying of silica–wollastonite gels. Two different silica precursors were used, TEOS and colloidal LUDOX, for composites named TW and LW, respectively. We utilized SAXS experiments, N 2 adsorption–desorption, and SEM techniques to determine the textural and structural properties of these porous materials. For both the TW and LW composites, it was shown that a macroporosity and a mesoporosity coexist. We argue that the proportion of macroporosity directly depends on the proportion of wollastonite fillers in the composite. We propose a unique two-stage drying mechanism to explain the formation of macropores. We additionally found that the surface of wollastonite fillers was covered by a dense multilayer packing of silica colloids in LUDOX LW xerocomposites. We believe that these surface-modified wollastonite fillers could improve the carbonation kinetics of wollastonite when used as a precursor for aqueous mineral carbonation, a promising route for safe and durable carbon sequestration. SEM image of wollastonite fillers covered by silica in a LUDOX–wollastonite composite (left), and schematic representation of the dense coating of colloidal silica particles at the surface of wollastonite fillers in LUDOX–wollastonite composites (right) Highlights Silica–wollastonite xerogel-composites (xerocomposites) were prepared. TEOS–wollastonite and LUDOX–wollastonite xerogels show porosity at two different scales, a macroporosity and a mesoporosity as confirmed from macroscopic and N 2 adsorption–desorption measurements. SAXS, SEM, and N 2 adsorption–desorption measurements reveal that the wollastonite filler surface is covered by a dense coating of silica colloidal particles in LUDOX–wollastonite xerocomposites.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-018-4874-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3280-6303</orcidid><orcidid>https://orcid.org/0000-0002-2977-3555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2019-04, Vol.90 (1), p.113-125
issn 0928-0707
1573-4846
language eng
recordid cdi_hal_primary_oai_HAL_hal_02464294v2
source Springer Link
subjects Carbon sequestration
Carbonation
Ceramics
Chemical Sciences
Chemistry and Materials Science
Composite materials
Composites
Drying
Fillers
Gels
Glass
Inorganic Chemistry
Ludox (trademark)
Macroporosity
Material chemistry
Materials Science
Multilayers
Nanotechnology
Natural Materials
Optical and Electronic Materials
Original Paper: Sol–gel and hybrid materials with surface modification for applications
Porous materials
Precursors
Silica gel
Silicon dioxide
Sol-gel processes
Wollastonite
title Surface and porous textural properties of silica–wollastonite composites prepared by sol–gel process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20and%20porous%20textural%20properties%20of%20silica%E2%80%93wollastonite%20composites%20prepared%20by%20sol%E2%80%93gel%20process&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Larreal%20de%20Hernandez,%20Lismarihen&rft.date=2019-04-01&rft.volume=90&rft.issue=1&rft.spage=113&rft.epage=125&rft.pages=113-125&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-018-4874-9&rft_dat=%3Cproquest_hal_p%3E2215571122%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-fbebcab419acb3286c8803ddf33531e9b7a469b7235a6e736e7f9b8df76d093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215571122&rft_id=info:pmid/&rfr_iscdi=true