Loading…

Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process

Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative wa...

Full description

Saved in:
Bibliographic Details
Published in:Chromatographia 2020-03, Vol.83 (3), p.439-449
Main Authors: Curat, Aurélien, Tisse, Séverine, Agasse-Peulon, Valérie, Villemin, Didier, Cardinael, Pascal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353
cites cdi_FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353
container_end_page 449
container_issue 3
container_start_page 439
container_title Chromatographia
container_volume 83
creator Curat, Aurélien
Tisse, Séverine
Agasse-Peulon, Valérie
Villemin, Didier
Cardinael, Pascal
description Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative was anchored in a three-dimensional network using the sol–gel process. Three different strategies were compared: using the derivative pure, in combination with a polymer or copolymerised with diethoxydimethylsilane. This last method allowed for the preparation of hybrid stationary phases with satisfactory efficiency (3500 plates per meter determined by the injection of n -tetradecane at 80 °C, k  = 8.19) and very good thermal stability up to 340 °C using the NTf 2 counter ion. The stationary phases demonstrated a good ability to separate positional isomers and polycyclic aromatic hydrocarbons. Polarity and molecular interactions with analytes were characterized by calculating the Rohrschneider–McReynolds constants and Abraham system constants. A classification of the polarity of the new stationary phases relative to 44 stationary phases, including commercial and non-commercial ones, was performed based on the RTILs using principal component analysis. Finally, the maximal operating temperature of these new stationary phases was compared with those of the most thermally stable conventional or RTIL-based stationary phases, demonstrating that the sol–gel process is an efficient way to enhance the thermal stability of GC stationary phases.
doi_str_mv 10.1007/s10337-020-03854-7
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02472248v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2360148720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngycPqJNkmu8dStF0oWFBvQkizWZuy3bTJtqAn38E39ElMu6I3T8MM3_8x_AhdErghAOI2EGBMJEAhAZYN0kQcoR7hhCaEEHqMegCQJ4MsZ6foLIRlXGnOeQ-9FI12fu28aq1rsKtwsbKlene13a5w4Rqr8dRutrYM2DZ4PMKP7QFV_g3PFiqYgHdW4XZh8KOrvz4-x6bGM--0CeEcnVSqDubiZ_bR8_3d02iSTB_GxWg4TTQbsDbJeDpXgpt5CWmludaMKpVxYCYzueBcCF5qmpcpMEg5JXlZgs5YRZhgJYmKPrruvAtVy7W3q_icdMrKyXAq9zegqaA0zXYkslcdu_ZuszWhlUu39U18T1LGgaSZoBAp2lHauxC8qX61BOS-cdk1Hs0gD41LEUOsC4UIN6_G_6n_SX0D65KCiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360148720</pqid></control><display><type>article</type><title>Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process</title><source>Springer Link</source><creator>Curat, Aurélien ; Tisse, Séverine ; Agasse-Peulon, Valérie ; Villemin, Didier ; Cardinael, Pascal</creator><creatorcontrib>Curat, Aurélien ; Tisse, Séverine ; Agasse-Peulon, Valérie ; Villemin, Didier ; Cardinael, Pascal</creatorcontrib><description>Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative was anchored in a three-dimensional network using the sol–gel process. Three different strategies were compared: using the derivative pure, in combination with a polymer or copolymerised with diethoxydimethylsilane. This last method allowed for the preparation of hybrid stationary phases with satisfactory efficiency (3500 plates per meter determined by the injection of n -tetradecane at 80 °C, k  = 8.19) and very good thermal stability up to 340 °C using the NTf 2 counter ion. The stationary phases demonstrated a good ability to separate positional isomers and polycyclic aromatic hydrocarbons. Polarity and molecular interactions with analytes were characterized by calculating the Rohrschneider–McReynolds constants and Abraham system constants. A classification of the polarity of the new stationary phases relative to 44 stationary phases, including commercial and non-commercial ones, was performed based on the RTILs using principal component analysis. Finally, the maximal operating temperature of these new stationary phases was compared with those of the most thermally stable conventional or RTIL-based stationary phases, demonstrating that the sol–gel process is an efficient way to enhance the thermal stability of GC stationary phases.</description><identifier>ISSN: 0009-5893</identifier><identifier>EISSN: 1612-1112</identifier><identifier>DOI: 10.1007/s10337-020-03854-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Chemical Sciences ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Copolymerization ; High temperature ; Ionic liquids ; Isomers ; Laboratory Medicine ; Material chemistry ; Molecular interactions ; Operating temperature ; or physical chemistry ; Organic chemistry ; Original ; Pharmacy ; Phases ; Polarity ; Polycyclic aromatic hydrocarbons ; Polymers ; Principal components analysis ; Proteomics ; Room temperature ; Sol-gel processes ; Tetradecane ; Theoretical and ; Thermal stability</subject><ispartof>Chromatographia, 2020-03, Vol.83 (3), p.439-449</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>2020© Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353</citedby><cites>FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353</cites><orcidid>0000-0003-2050-257X ; 0000-0001-8828-4527 ; 0000-0002-6266-3817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02472248$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Curat, Aurélien</creatorcontrib><creatorcontrib>Tisse, Séverine</creatorcontrib><creatorcontrib>Agasse-Peulon, Valérie</creatorcontrib><creatorcontrib>Villemin, Didier</creatorcontrib><creatorcontrib>Cardinael, Pascal</creatorcontrib><title>Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process</title><title>Chromatographia</title><addtitle>Chromatographia</addtitle><description>Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative was anchored in a three-dimensional network using the sol–gel process. Three different strategies were compared: using the derivative pure, in combination with a polymer or copolymerised with diethoxydimethylsilane. This last method allowed for the preparation of hybrid stationary phases with satisfactory efficiency (3500 plates per meter determined by the injection of n -tetradecane at 80 °C, k  = 8.19) and very good thermal stability up to 340 °C using the NTf 2 counter ion. The stationary phases demonstrated a good ability to separate positional isomers and polycyclic aromatic hydrocarbons. Polarity and molecular interactions with analytes were characterized by calculating the Rohrschneider–McReynolds constants and Abraham system constants. A classification of the polarity of the new stationary phases relative to 44 stationary phases, including commercial and non-commercial ones, was performed based on the RTILs using principal component analysis. Finally, the maximal operating temperature of these new stationary phases was compared with those of the most thermally stable conventional or RTIL-based stationary phases, demonstrating that the sol–gel process is an efficient way to enhance the thermal stability of GC stationary phases.</description><subject>Analytical Chemistry</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Copolymerization</subject><subject>High temperature</subject><subject>Ionic liquids</subject><subject>Isomers</subject><subject>Laboratory Medicine</subject><subject>Material chemistry</subject><subject>Molecular interactions</subject><subject>Operating temperature</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Original</subject><subject>Pharmacy</subject><subject>Phases</subject><subject>Polarity</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Polymers</subject><subject>Principal components analysis</subject><subject>Proteomics</subject><subject>Room temperature</subject><subject>Sol-gel processes</subject><subject>Tetradecane</subject><subject>Theoretical and</subject><subject>Thermal stability</subject><issn>0009-5893</issn><issn>1612-1112</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngycPqJNkmu8dStF0oWFBvQkizWZuy3bTJtqAn38E39ElMu6I3T8MM3_8x_AhdErghAOI2EGBMJEAhAZYN0kQcoR7hhCaEEHqMegCQJ4MsZ6foLIRlXGnOeQ-9FI12fu28aq1rsKtwsbKlene13a5w4Rqr8dRutrYM2DZ4PMKP7QFV_g3PFiqYgHdW4XZh8KOrvz4-x6bGM--0CeEcnVSqDubiZ_bR8_3d02iSTB_GxWg4TTQbsDbJeDpXgpt5CWmludaMKpVxYCYzueBcCF5qmpcpMEg5JXlZgs5YRZhgJYmKPrruvAtVy7W3q_icdMrKyXAq9zegqaA0zXYkslcdu_ZuszWhlUu39U18T1LGgaSZoBAp2lHauxC8qX61BOS-cdk1Hs0gD41LEUOsC4UIN6_G_6n_SX0D65KCiQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Curat, Aurélien</creator><creator>Tisse, Séverine</creator><creator>Agasse-Peulon, Valérie</creator><creator>Villemin, Didier</creator><creator>Cardinael, Pascal</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2050-257X</orcidid><orcidid>https://orcid.org/0000-0001-8828-4527</orcidid><orcidid>https://orcid.org/0000-0002-6266-3817</orcidid></search><sort><creationdate>20200301</creationdate><title>Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process</title><author>Curat, Aurélien ; Tisse, Séverine ; Agasse-Peulon, Valérie ; Villemin, Didier ; Cardinael, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Copolymerization</topic><topic>High temperature</topic><topic>Ionic liquids</topic><topic>Isomers</topic><topic>Laboratory Medicine</topic><topic>Material chemistry</topic><topic>Molecular interactions</topic><topic>Operating temperature</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Original</topic><topic>Pharmacy</topic><topic>Phases</topic><topic>Polarity</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Polymers</topic><topic>Principal components analysis</topic><topic>Proteomics</topic><topic>Room temperature</topic><topic>Sol-gel processes</topic><topic>Tetradecane</topic><topic>Theoretical and</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curat, Aurélien</creatorcontrib><creatorcontrib>Tisse, Séverine</creatorcontrib><creatorcontrib>Agasse-Peulon, Valérie</creatorcontrib><creatorcontrib>Villemin, Didier</creatorcontrib><creatorcontrib>Cardinael, Pascal</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chromatographia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curat, Aurélien</au><au>Tisse, Séverine</au><au>Agasse-Peulon, Valérie</au><au>Villemin, Didier</au><au>Cardinael, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process</atitle><jtitle>Chromatographia</jtitle><stitle>Chromatographia</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>83</volume><issue>3</issue><spage>439</spage><epage>449</epage><pages>439-449</pages><issn>0009-5893</issn><eissn>1612-1112</eissn><abstract>Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative was anchored in a three-dimensional network using the sol–gel process. Three different strategies were compared: using the derivative pure, in combination with a polymer or copolymerised with diethoxydimethylsilane. This last method allowed for the preparation of hybrid stationary phases with satisfactory efficiency (3500 plates per meter determined by the injection of n -tetradecane at 80 °C, k  = 8.19) and very good thermal stability up to 340 °C using the NTf 2 counter ion. The stationary phases demonstrated a good ability to separate positional isomers and polycyclic aromatic hydrocarbons. Polarity and molecular interactions with analytes were characterized by calculating the Rohrschneider–McReynolds constants and Abraham system constants. A classification of the polarity of the new stationary phases relative to 44 stationary phases, including commercial and non-commercial ones, was performed based on the RTILs using principal component analysis. Finally, the maximal operating temperature of these new stationary phases was compared with those of the most thermally stable conventional or RTIL-based stationary phases, demonstrating that the sol–gel process is an efficient way to enhance the thermal stability of GC stationary phases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10337-020-03854-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2050-257X</orcidid><orcidid>https://orcid.org/0000-0001-8828-4527</orcidid><orcidid>https://orcid.org/0000-0002-6266-3817</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-5893
ispartof Chromatographia, 2020-03, Vol.83 (3), p.439-449
issn 0009-5893
1612-1112
language eng
recordid cdi_hal_primary_oai_HAL_hal_02472248v1
source Springer Link
subjects Analytical Chemistry
Chemical Sciences
Chemistry
Chemistry and Materials Science
Chromatography
Copolymerization
High temperature
Ionic liquids
Isomers
Laboratory Medicine
Material chemistry
Molecular interactions
Operating temperature
or physical chemistry
Organic chemistry
Original
Pharmacy
Phases
Polarity
Polycyclic aromatic hydrocarbons
Polymers
Principal components analysis
Proteomics
Room temperature
Sol-gel processes
Tetradecane
Theoretical and
Thermal stability
title Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20Imidazolium%20Ionic%20Liquids%20in%20GC%20Stationary%20Phases%20via%20the%20Sol%E2%80%93Gel%20Process&rft.jtitle=Chromatographia&rft.au=Curat,%20Aur%C3%A9lien&rft.date=2020-03-01&rft.volume=83&rft.issue=3&rft.spage=439&rft.epage=449&rft.pages=439-449&rft.issn=0009-5893&rft.eissn=1612-1112&rft_id=info:doi/10.1007/s10337-020-03854-7&rft_dat=%3Cproquest_hal_p%3E2360148720%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2360148720&rft_id=info:pmid/&rfr_iscdi=true