Loading…
Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process
Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative wa...
Saved in:
Published in: | Chromatographia 2020-03, Vol.83 (3), p.439-449 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353 |
container_end_page | 449 |
container_issue | 3 |
container_start_page | 439 |
container_title | Chromatographia |
container_volume | 83 |
creator | Curat, Aurélien Tisse, Séverine Agasse-Peulon, Valérie Villemin, Didier Cardinael, Pascal |
description | Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative was anchored in a three-dimensional network using the sol–gel process. Three different strategies were compared: using the derivative pure, in combination with a polymer or copolymerised with diethoxydimethylsilane. This last method allowed for the preparation of hybrid stationary phases with satisfactory efficiency (3500 plates per meter determined by the injection of
n
-tetradecane at 80 °C,
k
= 8.19) and very good thermal stability up to 340 °C using the NTf
2
counter ion. The stationary phases demonstrated a good ability to separate positional isomers and polycyclic aromatic hydrocarbons. Polarity and molecular interactions with analytes were characterized by calculating the Rohrschneider–McReynolds constants and Abraham system constants. A classification of the polarity of the new stationary phases relative to 44 stationary phases, including commercial and non-commercial ones, was performed based on the RTILs using principal component analysis. Finally, the maximal operating temperature of these new stationary phases was compared with those of the most thermally stable conventional or RTIL-based stationary phases, demonstrating that the sol–gel process is an efficient way to enhance the thermal stability of GC stationary phases. |
doi_str_mv | 10.1007/s10337-020-03854-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02472248v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2360148720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngycPqJNkmu8dStF0oWFBvQkizWZuy3bTJtqAn38E39ElMu6I3T8MM3_8x_AhdErghAOI2EGBMJEAhAZYN0kQcoR7hhCaEEHqMegCQJ4MsZ6foLIRlXGnOeQ-9FI12fu28aq1rsKtwsbKlene13a5w4Rqr8dRutrYM2DZ4PMKP7QFV_g3PFiqYgHdW4XZh8KOrvz4-x6bGM--0CeEcnVSqDubiZ_bR8_3d02iSTB_GxWg4TTQbsDbJeDpXgpt5CWmludaMKpVxYCYzueBcCF5qmpcpMEg5JXlZgs5YRZhgJYmKPrruvAtVy7W3q_icdMrKyXAq9zegqaA0zXYkslcdu_ZuszWhlUu39U18T1LGgaSZoBAp2lHauxC8qX61BOS-cdk1Hs0gD41LEUOsC4UIN6_G_6n_SX0D65KCiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360148720</pqid></control><display><type>article</type><title>Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process</title><source>Springer Link</source><creator>Curat, Aurélien ; Tisse, Séverine ; Agasse-Peulon, Valérie ; Villemin, Didier ; Cardinael, Pascal</creator><creatorcontrib>Curat, Aurélien ; Tisse, Séverine ; Agasse-Peulon, Valérie ; Villemin, Didier ; Cardinael, Pascal</creatorcontrib><description>Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative was anchored in a three-dimensional network using the sol–gel process. Three different strategies were compared: using the derivative pure, in combination with a polymer or copolymerised with diethoxydimethylsilane. This last method allowed for the preparation of hybrid stationary phases with satisfactory efficiency (3500 plates per meter determined by the injection of
n
-tetradecane at 80 °C,
k
= 8.19) and very good thermal stability up to 340 °C using the NTf
2
counter ion. The stationary phases demonstrated a good ability to separate positional isomers and polycyclic aromatic hydrocarbons. Polarity and molecular interactions with analytes were characterized by calculating the Rohrschneider–McReynolds constants and Abraham system constants. A classification of the polarity of the new stationary phases relative to 44 stationary phases, including commercial and non-commercial ones, was performed based on the RTILs using principal component analysis. Finally, the maximal operating temperature of these new stationary phases was compared with those of the most thermally stable conventional or RTIL-based stationary phases, demonstrating that the sol–gel process is an efficient way to enhance the thermal stability of GC stationary phases.</description><identifier>ISSN: 0009-5893</identifier><identifier>EISSN: 1612-1112</identifier><identifier>DOI: 10.1007/s10337-020-03854-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Chemical Sciences ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Copolymerization ; High temperature ; Ionic liquids ; Isomers ; Laboratory Medicine ; Material chemistry ; Molecular interactions ; Operating temperature ; or physical chemistry ; Organic chemistry ; Original ; Pharmacy ; Phases ; Polarity ; Polycyclic aromatic hydrocarbons ; Polymers ; Principal components analysis ; Proteomics ; Room temperature ; Sol-gel processes ; Tetradecane ; Theoretical and ; Thermal stability</subject><ispartof>Chromatographia, 2020-03, Vol.83 (3), p.439-449</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>2020© Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353</citedby><cites>FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353</cites><orcidid>0000-0003-2050-257X ; 0000-0001-8828-4527 ; 0000-0002-6266-3817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02472248$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Curat, Aurélien</creatorcontrib><creatorcontrib>Tisse, Séverine</creatorcontrib><creatorcontrib>Agasse-Peulon, Valérie</creatorcontrib><creatorcontrib>Villemin, Didier</creatorcontrib><creatorcontrib>Cardinael, Pascal</creatorcontrib><title>Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process</title><title>Chromatographia</title><addtitle>Chromatographia</addtitle><description>Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative was anchored in a three-dimensional network using the sol–gel process. Three different strategies were compared: using the derivative pure, in combination with a polymer or copolymerised with diethoxydimethylsilane. This last method allowed for the preparation of hybrid stationary phases with satisfactory efficiency (3500 plates per meter determined by the injection of
n
-tetradecane at 80 °C,
k
= 8.19) and very good thermal stability up to 340 °C using the NTf
2
counter ion. The stationary phases demonstrated a good ability to separate positional isomers and polycyclic aromatic hydrocarbons. Polarity and molecular interactions with analytes were characterized by calculating the Rohrschneider–McReynolds constants and Abraham system constants. A classification of the polarity of the new stationary phases relative to 44 stationary phases, including commercial and non-commercial ones, was performed based on the RTILs using principal component analysis. Finally, the maximal operating temperature of these new stationary phases was compared with those of the most thermally stable conventional or RTIL-based stationary phases, demonstrating that the sol–gel process is an efficient way to enhance the thermal stability of GC stationary phases.</description><subject>Analytical Chemistry</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Copolymerization</subject><subject>High temperature</subject><subject>Ionic liquids</subject><subject>Isomers</subject><subject>Laboratory Medicine</subject><subject>Material chemistry</subject><subject>Molecular interactions</subject><subject>Operating temperature</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Original</subject><subject>Pharmacy</subject><subject>Phases</subject><subject>Polarity</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Polymers</subject><subject>Principal components analysis</subject><subject>Proteomics</subject><subject>Room temperature</subject><subject>Sol-gel processes</subject><subject>Tetradecane</subject><subject>Theoretical and</subject><subject>Thermal stability</subject><issn>0009-5893</issn><issn>1612-1112</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngycPqJNkmu8dStF0oWFBvQkizWZuy3bTJtqAn38E39ElMu6I3T8MM3_8x_AhdErghAOI2EGBMJEAhAZYN0kQcoR7hhCaEEHqMegCQJ4MsZ6foLIRlXGnOeQ-9FI12fu28aq1rsKtwsbKlene13a5w4Rqr8dRutrYM2DZ4PMKP7QFV_g3PFiqYgHdW4XZh8KOrvz4-x6bGM--0CeEcnVSqDubiZ_bR8_3d02iSTB_GxWg4TTQbsDbJeDpXgpt5CWmludaMKpVxYCYzueBcCF5qmpcpMEg5JXlZgs5YRZhgJYmKPrruvAtVy7W3q_icdMrKyXAq9zegqaA0zXYkslcdu_ZuszWhlUu39U18T1LGgaSZoBAp2lHauxC8qX61BOS-cdk1Hs0gD41LEUOsC4UIN6_G_6n_SX0D65KCiQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Curat, Aurélien</creator><creator>Tisse, Séverine</creator><creator>Agasse-Peulon, Valérie</creator><creator>Villemin, Didier</creator><creator>Cardinael, Pascal</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2050-257X</orcidid><orcidid>https://orcid.org/0000-0001-8828-4527</orcidid><orcidid>https://orcid.org/0000-0002-6266-3817</orcidid></search><sort><creationdate>20200301</creationdate><title>Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process</title><author>Curat, Aurélien ; Tisse, Séverine ; Agasse-Peulon, Valérie ; Villemin, Didier ; Cardinael, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Copolymerization</topic><topic>High temperature</topic><topic>Ionic liquids</topic><topic>Isomers</topic><topic>Laboratory Medicine</topic><topic>Material chemistry</topic><topic>Molecular interactions</topic><topic>Operating temperature</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Original</topic><topic>Pharmacy</topic><topic>Phases</topic><topic>Polarity</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Polymers</topic><topic>Principal components analysis</topic><topic>Proteomics</topic><topic>Room temperature</topic><topic>Sol-gel processes</topic><topic>Tetradecane</topic><topic>Theoretical and</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curat, Aurélien</creatorcontrib><creatorcontrib>Tisse, Séverine</creatorcontrib><creatorcontrib>Agasse-Peulon, Valérie</creatorcontrib><creatorcontrib>Villemin, Didier</creatorcontrib><creatorcontrib>Cardinael, Pascal</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chromatographia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curat, Aurélien</au><au>Tisse, Séverine</au><au>Agasse-Peulon, Valérie</au><au>Villemin, Didier</au><au>Cardinael, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process</atitle><jtitle>Chromatographia</jtitle><stitle>Chromatographia</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>83</volume><issue>3</issue><spage>439</spage><epage>449</epage><pages>439-449</pages><issn>0009-5893</issn><eissn>1612-1112</eissn><abstract>Room-temperature ionic liquids (RTILs) have proven to be efficient polar or highly polar stationary phases for GC. Nevertheless, the thermal stability of monocationic RTILs limits their use in high-temperature GC. To improve the thermal stability, an RTIL based on a 1-methylimidazolium derivative was anchored in a three-dimensional network using the sol–gel process. Three different strategies were compared: using the derivative pure, in combination with a polymer or copolymerised with diethoxydimethylsilane. This last method allowed for the preparation of hybrid stationary phases with satisfactory efficiency (3500 plates per meter determined by the injection of
n
-tetradecane at 80 °C,
k
= 8.19) and very good thermal stability up to 340 °C using the NTf
2
counter ion. The stationary phases demonstrated a good ability to separate positional isomers and polycyclic aromatic hydrocarbons. Polarity and molecular interactions with analytes were characterized by calculating the Rohrschneider–McReynolds constants and Abraham system constants. A classification of the polarity of the new stationary phases relative to 44 stationary phases, including commercial and non-commercial ones, was performed based on the RTILs using principal component analysis. Finally, the maximal operating temperature of these new stationary phases was compared with those of the most thermally stable conventional or RTIL-based stationary phases, demonstrating that the sol–gel process is an efficient way to enhance the thermal stability of GC stationary phases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10337-020-03854-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2050-257X</orcidid><orcidid>https://orcid.org/0000-0001-8828-4527</orcidid><orcidid>https://orcid.org/0000-0002-6266-3817</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-5893 |
ispartof | Chromatographia, 2020-03, Vol.83 (3), p.439-449 |
issn | 0009-5893 1612-1112 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02472248v1 |
source | Springer Link |
subjects | Analytical Chemistry Chemical Sciences Chemistry Chemistry and Materials Science Chromatography Copolymerization High temperature Ionic liquids Isomers Laboratory Medicine Material chemistry Molecular interactions Operating temperature or physical chemistry Organic chemistry Original Pharmacy Phases Polarity Polycyclic aromatic hydrocarbons Polymers Principal components analysis Proteomics Room temperature Sol-gel processes Tetradecane Theoretical and Thermal stability |
title | Incorporation of Imidazolium Ionic Liquids in GC Stationary Phases via the Sol–Gel Process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20Imidazolium%20Ionic%20Liquids%20in%20GC%20Stationary%20Phases%20via%20the%20Sol%E2%80%93Gel%20Process&rft.jtitle=Chromatographia&rft.au=Curat,%20Aur%C3%A9lien&rft.date=2020-03-01&rft.volume=83&rft.issue=3&rft.spage=439&rft.epage=449&rft.pages=439-449&rft.issn=0009-5893&rft.eissn=1612-1112&rft_id=info:doi/10.1007/s10337-020-03854-7&rft_dat=%3Cproquest_hal_p%3E2360148720%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-864ba76ebd04fc6cc32aa8603e8e9766776dc29d403046219dd0c83f1373d1353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2360148720&rft_id=info:pmid/&rfr_iscdi=true |