Loading…

Fine analysis of interaction mechanism of bioactive glass surface after soaking in SBF solution: AFM and ICP-OES investigations

•Increases of glass surface crystallisation with adapted ionic exchanges kinetic.•State of glass surface at different periods was highlighted using AFM analyses.•Surface homogenization over time, the gap decreases in phase from 60 to 15 Å.•Surface roughness decreasing over time, the gap decreases in...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2020-03, Vol.505, p.144076, Article 144076
Main Authors: Rocton, Nicolas, Oudadesse, Hassane, Lefeuvre, Bertrand, Peisker, Henrik, Rbii, Khalid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Increases of glass surface crystallisation with adapted ionic exchanges kinetic.•State of glass surface at different periods was highlighted using AFM analyses.•Surface homogenization over time, the gap decreases in phase from 60 to 15 Å.•Surface roughness decreasing over time, the gap decreases in height from 7 to 3 μm. Bioactive glasses have the physical characteristics enabling them to be used in bone tissue engineering applications. However, the exact mechanism of the interactions between the glass surface and environment leading to the transition from the vitreous phase to the crystalline phase remains a subject of study. This work focuses on the growth of a calcium phosphate layer on the surface of the glass after immersion in a mineral solution, which mimics the mineral phase of human blood. The investigations use the Inductively Coupled Plasma and the Atomic Force Microscopy to establish the kinetic of crystallization, the kinetic of chemical reactivity and the surface transformations such as structure, texture and morphology of the bioactive glass. Obtained results show the progressive formation of a hydroxyapatite layer within 2 weeks. This crystal which is that of the bone belongs to the crystallographic structure within space group of P63/m. In addition, results show a decrease of the gradient of thickness which varies according to the immersion time from 7.5 µm to 2.8 µm and an increase of the homogeneity of the surface visible by the lowering of the gradient in the phase measurement from 60 Å to 15 Å.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2019.144076