Loading…
Impact of Therapeutic Irradiation on Healthy Articular Cartilage
Radiation-induced complications in bone and cartilage are of increasing concern due to potential long-term effects in cancer survivors. Healthy articular cartilage may be exposed to radiation during either chondrosarcoma treatment or in-field radiotherapy of tumors located in close proximity to arti...
Saved in:
Published in: | Radiation research 2015-02, Vol.183 (2), p.135-146 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiation-induced complications in bone and cartilage are of increasing concern due to potential long-term effects in cancer survivors. Healthy articular cartilage may be exposed to radiation during either chondrosarcoma treatment or in-field radiotherapy of tumors located in close proximity to articulation. Cartilage exposed to radiation undergoes bone differentiation and senescence, which can lead to painful and disabling sequelae that can impair patient quality of life. An understanding of the biological processes involved in healthy cartilage response to radiotherapy may not only optimize the delivery of therapeutic radiation but also reduce the risk of long-term sequelae in irradiated cartilage. Over the last few decades, radiobiology studies have focused primarily on signaling and repair of DNA damage pathways induced by ionizing radiation in immortalized cells under conditions dramatically different from human homeostasis. This research needs to be continued and broadened, since the range of normal tissue responses to radiation exposure is still not fully understood, despite being recognized as the major limiting factor in the rupture of tissue homeostasis after radiotherapy. Human articular cartilage is an avascular tissue with low intracellular oxygen levels and is comprised of a single cell lineage of chondrocytes embedded in a highly dense and structured extracellular matrix. These relatively unique features may impact inherent cell radiation sensitivity and suggests that canonical cell responses to ionizing radiation may not be applicable to articular cartilage. Despite the number of studies in this field, radiation-induced modifications of chondrocyte proteome remain unclear because of the dramatic variability in reported experimental conditions. In this review, we propose to introduce cartilage tissue physiology and microenvironment concepts, and then present a comprehensive synthesis of cartilage radiation biology. |
---|---|
ISSN: | 0033-7587 1938-5404 |
DOI: | 10.1667/RR13928.1 |