Loading…
Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array
Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the pla...
Saved in:
Published in: | IEEE transactions on signal processing 2011-01, Vol.59 (1), p.425-431 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563 |
container_end_page | 431 |
container_issue | 1 |
container_start_page | 425 |
container_title | IEEE transactions on signal processing |
container_volume | 59 |
creator | El Korso, M N Boyer, R Renaux, A Marcos, S |
description | Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the plan of the array. In this correspondence, we derive the statistical resolution limit (SRL) characterizing the minimal separation, in terms of direction-of-arrivals, to resolve two closely spaced known polarized sources impinging on a COLD-ULA. Toward this end, nonmatrix closed form expressions of the deterministic Cramér-Rao bound (CRB) are derived and thus, the SRL is deduced. A comparison between the SRL of the COLD-ULA and the classical ULA are given. Particularly, it is shown that, in the case of orthogonal known signal sources, the SRL of the COLD-ULA is equal to the SRL of the ULA, meaning that it is not a function of polarization parameters. Furthermore, due to the derived SRL, it is shown that, under some general conditions, the SRL of the COLD-ULA is smaller than the one of the ULA. |
doi_str_mv | 10.1109/TSP.2010.2083657 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02508685v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597955</ieee_id><sourcerecordid>855706295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhpfSQtOk90IvglJKDpuMvldH47ZJYSElH9BThbI7qhXWK1eSA_n3lbHxoSeNRs87M5q3aT5QuKAUzOX93c8LBvXGoONK6lfNCTWCtiC0el1jkLyVnf71tnmX8xMAFcKok-b3XXEl5BIGN5FbzHHalhBn0od1KCR6UlZIHubgY1rX5IwukWUccC6YcCQ3qazinzhXcR_jhrh5JF_DJk5IFim5l7PmjXdTxveH87R5-P7tfnnd9jdXP5aLvh0EM6Wl0og6ETpw6N3IkQstvOej9gIfNQMhqWAeB3BKCsWN1trzRz6iNmMnFT9tzvd1V26ymxTWLr3Y6IK9XvR2lwMmoVOdfKaV_bJnNyn-3WIudh3ygNPkZozbbDspNShmZCU__Uc-xW2qn82WAgeqjQRWKdhTQ4o5J_THASjYnTe2emN33tiDN1Xy-VDY5bp4n9w8hHzUMa6pVJ2o3Mc9FxDx-CylqZ0l_wcpUJXZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030179502</pqid></control><display><type>article</type><title>Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array</title><source>IEEE Electronic Library (IEL) Journals</source><creator>El Korso, M N ; Boyer, R ; Renaux, A ; Marcos, S</creator><creatorcontrib>El Korso, M N ; Boyer, R ; Renaux, A ; Marcos, S</creatorcontrib><description>Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the plan of the array. In this correspondence, we derive the statistical resolution limit (SRL) characterizing the minimal separation, in terms of direction-of-arrivals, to resolve two closely spaced known polarized sources impinging on a COLD-ULA. Toward this end, nonmatrix closed form expressions of the deterministic Cramér-Rao bound (CRB) are derived and thus, the SRL is deduced. A comparison between the SRL of the COLD-ULA and the classical ULA are given. Particularly, it is shown that, in the case of orthogonal known signal sources, the SRL of the COLD-ULA is equal to the SRL of the ULA, meaning that it is not a function of polarization parameters. Furthermore, due to the derived SRL, it is shown that, under some general conditions, the SRL of the COLD-ULA is smaller than the one of the ULA.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2010.2083657</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation methods ; Arrays ; Cocentered orthogonal loop and dipole (COLD) array ; Computer Science ; Context ; Cramer-Rao bounds ; Detection, estimation, filtering, equalization, prediction ; Dipoles ; Exact sciences and technology ; Exact solutions ; Information, signal and communications theory ; Linear arrays ; Localization ; Mathematical analysis ; Miscellaneous ; Numerical simulation ; Polarization ; polarized sources localization ; Sensor arrays ; Signal and communications theory ; Signal and Image Processing ; Signal processing ; Signal resolution ; Signal, noise ; statistical resolution limit ; Telecommunications and information theory ; Vectors (mathematics)</subject><ispartof>IEEE transactions on signal processing, 2011-01, Vol.59 (1), p.425-431</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563</citedby><cites>FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563</cites><orcidid>0000-0002-5489-4308 ; 0000-0001-5546-3801 ; 0000-0002-4987-9613 ; 0000-0002-7170-350X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23715684$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02508685$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>El Korso, M N</creatorcontrib><creatorcontrib>Boyer, R</creatorcontrib><creatorcontrib>Renaux, A</creatorcontrib><creatorcontrib>Marcos, S</creatorcontrib><title>Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the plan of the array. In this correspondence, we derive the statistical resolution limit (SRL) characterizing the minimal separation, in terms of direction-of-arrivals, to resolve two closely spaced known polarized sources impinging on a COLD-ULA. Toward this end, nonmatrix closed form expressions of the deterministic Cramér-Rao bound (CRB) are derived and thus, the SRL is deduced. A comparison between the SRL of the COLD-ULA and the classical ULA are given. Particularly, it is shown that, in the case of orthogonal known signal sources, the SRL of the COLD-ULA is equal to the SRL of the ULA, meaning that it is not a function of polarization parameters. Furthermore, due to the derived SRL, it is shown that, under some general conditions, the SRL of the COLD-ULA is smaller than the one of the ULA.</description><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Arrays</subject><subject>Cocentered orthogonal loop and dipole (COLD) array</subject><subject>Computer Science</subject><subject>Context</subject><subject>Cramer-Rao bounds</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dipoles</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Information, signal and communications theory</subject><subject>Linear arrays</subject><subject>Localization</subject><subject>Mathematical analysis</subject><subject>Miscellaneous</subject><subject>Numerical simulation</subject><subject>Polarization</subject><subject>polarized sources localization</subject><subject>Sensor arrays</subject><subject>Signal and communications theory</subject><subject>Signal and Image Processing</subject><subject>Signal processing</subject><subject>Signal resolution</subject><subject>Signal, noise</subject><subject>statistical resolution limit</subject><subject>Telecommunications and information theory</subject><subject>Vectors (mathematics)</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rGzEQhpfSQtOk90IvglJKDpuMvldH47ZJYSElH9BThbI7qhXWK1eSA_n3lbHxoSeNRs87M5q3aT5QuKAUzOX93c8LBvXGoONK6lfNCTWCtiC0el1jkLyVnf71tnmX8xMAFcKok-b3XXEl5BIGN5FbzHHalhBn0od1KCR6UlZIHubgY1rX5IwukWUccC6YcCQ3qazinzhXcR_jhrh5JF_DJk5IFim5l7PmjXdTxveH87R5-P7tfnnd9jdXP5aLvh0EM6Wl0og6ETpw6N3IkQstvOej9gIfNQMhqWAeB3BKCsWN1trzRz6iNmMnFT9tzvd1V26ymxTWLr3Y6IK9XvR2lwMmoVOdfKaV_bJnNyn-3WIudh3ygNPkZozbbDspNShmZCU__Uc-xW2qn82WAgeqjQRWKdhTQ4o5J_THASjYnTe2emN33tiDN1Xy-VDY5bp4n9w8hHzUMa6pVJ2o3Mc9FxDx-CylqZ0l_wcpUJXZ</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>El Korso, M N</creator><creator>Boyer, R</creator><creator>Renaux, A</creator><creator>Marcos, S</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5489-4308</orcidid><orcidid>https://orcid.org/0000-0001-5546-3801</orcidid><orcidid>https://orcid.org/0000-0002-4987-9613</orcidid><orcidid>https://orcid.org/0000-0002-7170-350X</orcidid></search><sort><creationdate>201101</creationdate><title>Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array</title><author>El Korso, M N ; Boyer, R ; Renaux, A ; Marcos, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Arrays</topic><topic>Cocentered orthogonal loop and dipole (COLD) array</topic><topic>Computer Science</topic><topic>Context</topic><topic>Cramer-Rao bounds</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dipoles</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Information, signal and communications theory</topic><topic>Linear arrays</topic><topic>Localization</topic><topic>Mathematical analysis</topic><topic>Miscellaneous</topic><topic>Numerical simulation</topic><topic>Polarization</topic><topic>polarized sources localization</topic><topic>Sensor arrays</topic><topic>Signal and communications theory</topic><topic>Signal and Image Processing</topic><topic>Signal processing</topic><topic>Signal resolution</topic><topic>Signal, noise</topic><topic>statistical resolution limit</topic><topic>Telecommunications and information theory</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Korso, M N</creatorcontrib><creatorcontrib>Boyer, R</creatorcontrib><creatorcontrib>Renaux, A</creatorcontrib><creatorcontrib>Marcos, S</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Korso, M N</au><au>Boyer, R</au><au>Renaux, A</au><au>Marcos, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-01</date><risdate>2011</risdate><volume>59</volume><issue>1</issue><spage>425</spage><epage>431</epage><pages>425-431</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the plan of the array. In this correspondence, we derive the statistical resolution limit (SRL) characterizing the minimal separation, in terms of direction-of-arrivals, to resolve two closely spaced known polarized sources impinging on a COLD-ULA. Toward this end, nonmatrix closed form expressions of the deterministic Cramér-Rao bound (CRB) are derived and thus, the SRL is deduced. A comparison between the SRL of the COLD-ULA and the classical ULA are given. Particularly, it is shown that, in the case of orthogonal known signal sources, the SRL of the COLD-ULA is equal to the SRL of the ULA, meaning that it is not a function of polarization parameters. Furthermore, due to the derived SRL, it is shown that, under some general conditions, the SRL of the COLD-ULA is smaller than the one of the ULA.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2010.2083657</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5489-4308</orcidid><orcidid>https://orcid.org/0000-0001-5546-3801</orcidid><orcidid>https://orcid.org/0000-0002-4987-9613</orcidid><orcidid>https://orcid.org/0000-0002-7170-350X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2011-01, Vol.59 (1), p.425-431 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02508685v1 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Approximation methods Arrays Cocentered orthogonal loop and dipole (COLD) array Computer Science Context Cramer-Rao bounds Detection, estimation, filtering, equalization, prediction Dipoles Exact sciences and technology Exact solutions Information, signal and communications theory Linear arrays Localization Mathematical analysis Miscellaneous Numerical simulation Polarization polarized sources localization Sensor arrays Signal and communications theory Signal and Image Processing Signal processing Signal resolution Signal, noise statistical resolution limit Telecommunications and information theory Vectors (mathematics) |
title | Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Resolution%20Limit%20of%20the%20Uniform%20Linear%20Cocentered%20Orthogonal%20Loop%20and%20Dipole%20Array&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=El%20Korso,%20M%20N&rft.date=2011-01&rft.volume=59&rft.issue=1&rft.spage=425&rft.epage=431&rft.pages=425-431&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2010.2083657&rft_dat=%3Cproquest_hal_p%3E855706295%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030179502&rft_id=info:pmid/&rft_ieee_id=5597955&rfr_iscdi=true |