Loading…

Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array

Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the pla...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2011-01, Vol.59 (1), p.425-431
Main Authors: El Korso, M N, Boyer, R, Renaux, A, Marcos, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563
cites cdi_FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563
container_end_page 431
container_issue 1
container_start_page 425
container_title IEEE transactions on signal processing
container_volume 59
creator El Korso, M N
Boyer, R
Renaux, A
Marcos, S
description Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the plan of the array. In this correspondence, we derive the statistical resolution limit (SRL) characterizing the minimal separation, in terms of direction-of-arrivals, to resolve two closely spaced known polarized sources impinging on a COLD-ULA. Toward this end, nonmatrix closed form expressions of the deterministic Cramér-Rao bound (CRB) are derived and thus, the SRL is deduced. A comparison between the SRL of the COLD-ULA and the classical ULA are given. Particularly, it is shown that, in the case of orthogonal known signal sources, the SRL of the COLD-ULA is equal to the SRL of the ULA, meaning that it is not a function of polarization parameters. Furthermore, due to the derived SRL, it is shown that, under some general conditions, the SRL of the COLD-ULA is smaller than the one of the ULA.
doi_str_mv 10.1109/TSP.2010.2083657
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02508685v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597955</ieee_id><sourcerecordid>855706295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhpfSQtOk90IvglJKDpuMvldH47ZJYSElH9BThbI7qhXWK1eSA_n3lbHxoSeNRs87M5q3aT5QuKAUzOX93c8LBvXGoONK6lfNCTWCtiC0el1jkLyVnf71tnmX8xMAFcKok-b3XXEl5BIGN5FbzHHalhBn0od1KCR6UlZIHubgY1rX5IwukWUccC6YcCQ3qazinzhXcR_jhrh5JF_DJk5IFim5l7PmjXdTxveH87R5-P7tfnnd9jdXP5aLvh0EM6Wl0og6ETpw6N3IkQstvOej9gIfNQMhqWAeB3BKCsWN1trzRz6iNmMnFT9tzvd1V26ymxTWLr3Y6IK9XvR2lwMmoVOdfKaV_bJnNyn-3WIudh3ygNPkZozbbDspNShmZCU__Uc-xW2qn82WAgeqjQRWKdhTQ4o5J_THASjYnTe2emN33tiDN1Xy-VDY5bp4n9w8hHzUMa6pVJ2o3Mc9FxDx-CylqZ0l_wcpUJXZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030179502</pqid></control><display><type>article</type><title>Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array</title><source>IEEE Electronic Library (IEL) Journals</source><creator>El Korso, M N ; Boyer, R ; Renaux, A ; Marcos, S</creator><creatorcontrib>El Korso, M N ; Boyer, R ; Renaux, A ; Marcos, S</creatorcontrib><description>Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the plan of the array. In this correspondence, we derive the statistical resolution limit (SRL) characterizing the minimal separation, in terms of direction-of-arrivals, to resolve two closely spaced known polarized sources impinging on a COLD-ULA. Toward this end, nonmatrix closed form expressions of the deterministic Cramér-Rao bound (CRB) are derived and thus, the SRL is deduced. A comparison between the SRL of the COLD-ULA and the classical ULA are given. Particularly, it is shown that, in the case of orthogonal known signal sources, the SRL of the COLD-ULA is equal to the SRL of the ULA, meaning that it is not a function of polarization parameters. Furthermore, due to the derived SRL, it is shown that, under some general conditions, the SRL of the COLD-ULA is smaller than the one of the ULA.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2010.2083657</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation methods ; Arrays ; Cocentered orthogonal loop and dipole (COLD) array ; Computer Science ; Context ; Cramer-Rao bounds ; Detection, estimation, filtering, equalization, prediction ; Dipoles ; Exact sciences and technology ; Exact solutions ; Information, signal and communications theory ; Linear arrays ; Localization ; Mathematical analysis ; Miscellaneous ; Numerical simulation ; Polarization ; polarized sources localization ; Sensor arrays ; Signal and communications theory ; Signal and Image Processing ; Signal processing ; Signal resolution ; Signal, noise ; statistical resolution limit ; Telecommunications and information theory ; Vectors (mathematics)</subject><ispartof>IEEE transactions on signal processing, 2011-01, Vol.59 (1), p.425-431</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563</citedby><cites>FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563</cites><orcidid>0000-0002-5489-4308 ; 0000-0001-5546-3801 ; 0000-0002-4987-9613 ; 0000-0002-7170-350X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23715684$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02508685$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>El Korso, M N</creatorcontrib><creatorcontrib>Boyer, R</creatorcontrib><creatorcontrib>Renaux, A</creatorcontrib><creatorcontrib>Marcos, S</creatorcontrib><title>Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the plan of the array. In this correspondence, we derive the statistical resolution limit (SRL) characterizing the minimal separation, in terms of direction-of-arrivals, to resolve two closely spaced known polarized sources impinging on a COLD-ULA. Toward this end, nonmatrix closed form expressions of the deterministic Cramér-Rao bound (CRB) are derived and thus, the SRL is deduced. A comparison between the SRL of the COLD-ULA and the classical ULA are given. Particularly, it is shown that, in the case of orthogonal known signal sources, the SRL of the COLD-ULA is equal to the SRL of the ULA, meaning that it is not a function of polarization parameters. Furthermore, due to the derived SRL, it is shown that, under some general conditions, the SRL of the COLD-ULA is smaller than the one of the ULA.</description><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Arrays</subject><subject>Cocentered orthogonal loop and dipole (COLD) array</subject><subject>Computer Science</subject><subject>Context</subject><subject>Cramer-Rao bounds</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dipoles</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Information, signal and communications theory</subject><subject>Linear arrays</subject><subject>Localization</subject><subject>Mathematical analysis</subject><subject>Miscellaneous</subject><subject>Numerical simulation</subject><subject>Polarization</subject><subject>polarized sources localization</subject><subject>Sensor arrays</subject><subject>Signal and communications theory</subject><subject>Signal and Image Processing</subject><subject>Signal processing</subject><subject>Signal resolution</subject><subject>Signal, noise</subject><subject>statistical resolution limit</subject><subject>Telecommunications and information theory</subject><subject>Vectors (mathematics)</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rGzEQhpfSQtOk90IvglJKDpuMvldH47ZJYSElH9BThbI7qhXWK1eSA_n3lbHxoSeNRs87M5q3aT5QuKAUzOX93c8LBvXGoONK6lfNCTWCtiC0el1jkLyVnf71tnmX8xMAFcKok-b3XXEl5BIGN5FbzHHalhBn0od1KCR6UlZIHubgY1rX5IwukWUccC6YcCQ3qazinzhXcR_jhrh5JF_DJk5IFim5l7PmjXdTxveH87R5-P7tfnnd9jdXP5aLvh0EM6Wl0og6ETpw6N3IkQstvOej9gIfNQMhqWAeB3BKCsWN1trzRz6iNmMnFT9tzvd1V26ymxTWLr3Y6IK9XvR2lwMmoVOdfKaV_bJnNyn-3WIudh3ygNPkZozbbDspNShmZCU__Uc-xW2qn82WAgeqjQRWKdhTQ4o5J_THASjYnTe2emN33tiDN1Xy-VDY5bp4n9w8hHzUMa6pVJ2o3Mc9FxDx-CylqZ0l_wcpUJXZ</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>El Korso, M N</creator><creator>Boyer, R</creator><creator>Renaux, A</creator><creator>Marcos, S</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5489-4308</orcidid><orcidid>https://orcid.org/0000-0001-5546-3801</orcidid><orcidid>https://orcid.org/0000-0002-4987-9613</orcidid><orcidid>https://orcid.org/0000-0002-7170-350X</orcidid></search><sort><creationdate>201101</creationdate><title>Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array</title><author>El Korso, M N ; Boyer, R ; Renaux, A ; Marcos, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Arrays</topic><topic>Cocentered orthogonal loop and dipole (COLD) array</topic><topic>Computer Science</topic><topic>Context</topic><topic>Cramer-Rao bounds</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dipoles</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Information, signal and communications theory</topic><topic>Linear arrays</topic><topic>Localization</topic><topic>Mathematical analysis</topic><topic>Miscellaneous</topic><topic>Numerical simulation</topic><topic>Polarization</topic><topic>polarized sources localization</topic><topic>Sensor arrays</topic><topic>Signal and communications theory</topic><topic>Signal and Image Processing</topic><topic>Signal processing</topic><topic>Signal resolution</topic><topic>Signal, noise</topic><topic>statistical resolution limit</topic><topic>Telecommunications and information theory</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Korso, M N</creatorcontrib><creatorcontrib>Boyer, R</creatorcontrib><creatorcontrib>Renaux, A</creatorcontrib><creatorcontrib>Marcos, S</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Korso, M N</au><au>Boyer, R</au><au>Renaux, A</au><au>Marcos, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-01</date><risdate>2011</risdate><volume>59</volume><issue>1</issue><spage>425</spage><epage>431</epage><pages>425-431</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Among the family of polarization sensitive arrays, we can find the so-called cocentered orthogonal loop and dipole uniform linear array (COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g., the insensibility of the polarization vector with respect to the source localization in the plan of the array. In this correspondence, we derive the statistical resolution limit (SRL) characterizing the minimal separation, in terms of direction-of-arrivals, to resolve two closely spaced known polarized sources impinging on a COLD-ULA. Toward this end, nonmatrix closed form expressions of the deterministic Cramér-Rao bound (CRB) are derived and thus, the SRL is deduced. A comparison between the SRL of the COLD-ULA and the classical ULA are given. Particularly, it is shown that, in the case of orthogonal known signal sources, the SRL of the COLD-ULA is equal to the SRL of the ULA, meaning that it is not a function of polarization parameters. Furthermore, due to the derived SRL, it is shown that, under some general conditions, the SRL of the COLD-ULA is smaller than the one of the ULA.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2010.2083657</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5489-4308</orcidid><orcidid>https://orcid.org/0000-0001-5546-3801</orcidid><orcidid>https://orcid.org/0000-0002-4987-9613</orcidid><orcidid>https://orcid.org/0000-0002-7170-350X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2011-01, Vol.59 (1), p.425-431
issn 1053-587X
1941-0476
language eng
recordid cdi_hal_primary_oai_HAL_hal_02508685v1
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Approximation methods
Arrays
Cocentered orthogonal loop and dipole (COLD) array
Computer Science
Context
Cramer-Rao bounds
Detection, estimation, filtering, equalization, prediction
Dipoles
Exact sciences and technology
Exact solutions
Information, signal and communications theory
Linear arrays
Localization
Mathematical analysis
Miscellaneous
Numerical simulation
Polarization
polarized sources localization
Sensor arrays
Signal and communications theory
Signal and Image Processing
Signal processing
Signal resolution
Signal, noise
statistical resolution limit
Telecommunications and information theory
Vectors (mathematics)
title Statistical Resolution Limit of the Uniform Linear Cocentered Orthogonal Loop and Dipole Array
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Resolution%20Limit%20of%20the%20Uniform%20Linear%20Cocentered%20Orthogonal%20Loop%20and%20Dipole%20Array&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=El%20Korso,%20M%20N&rft.date=2011-01&rft.volume=59&rft.issue=1&rft.spage=425&rft.epage=431&rft.pages=425-431&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2010.2083657&rft_dat=%3Cproquest_hal_p%3E855706295%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-1594014ea0aefad3e3474ff3d7f4eb72045142fec0a654639777f3b3de79d8563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030179502&rft_id=info:pmid/&rft_ieee_id=5597955&rfr_iscdi=true