Loading…

Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation

The shaping of metal–organic frameworks (MOFs) has become increasingly studied over the past few years, because it represents a major bottleneck toward their further applications at a larger scale. MOF-based macroscale solids should present performances similar to those of their powder counterparts,...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-03, Vol.12 (9), p.10983-10992
Main Authors: Dhainaut, Jérémy, Bonneau, Mickaële, Ueoka, Ryota, Kanamori, Kazuyoshi, Furukawa, Shuhei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a404t-1eac432a6ca6ca3f97bfec1f733b6b3e13d7f8780ffaf0e624d71abc496ae9d73
cites cdi_FETCH-LOGICAL-a404t-1eac432a6ca6ca3f97bfec1f733b6b3e13d7f8780ffaf0e624d71abc496ae9d73
container_end_page 10992
container_issue 9
container_start_page 10983
container_title ACS applied materials & interfaces
container_volume 12
creator Dhainaut, Jérémy
Bonneau, Mickaële
Ueoka, Ryota
Kanamori, Kazuyoshi
Furukawa, Shuhei
description The shaping of metal–organic frameworks (MOFs) has become increasingly studied over the past few years, because it represents a major bottleneck toward their further applications at a larger scale. MOF-based macroscale solids should present performances similar to those of their powder counterparts, along with adequate mechanical resistance. Three-dimensional printing is a promising technology as it allows the fast prototyping of materials at the macroscale level; however, the large amounts of added binders have a detrimental effect on the porous properties of the solids. Herein, a 3D printer was modified to prepare a variety of MOF-based solids with controlled morphologies from shear-thinning inks containing 2-hydroxyethyl cellulose. Four benchmark MOFs were tested for this purpose: HKUST-1, CPL-1, ZIF-8, and UiO-66-NH2. All solids are mechanically stable with up to 0.6 MPa of uniaxial compression and highly porous with BET specific surface areas lowered by 0 to −25%. Furthermore, these solids were applied to high-pressure hydrocarbon sorption (CH4, C2H4, and C2H6), for which they presented a consequent methane gravimetric uptake (UiO-66-NH2, ZIF-8, and HKUST-1) and a highly preferential adsorption of ethylene over ethane (CPL-1).
doi_str_mv 10.1021/acsami.9b22257
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02510689v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354191620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-1eac432a6ca6ca3f97bfec1f733b6b3e13d7f8780ffaf0e624d71abc496ae9d73</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EoqVw5Yh8hEpZ_C_J5lgVtltpq1YUztYkGe-6TeKt7VD1xhNw4Q15Erxk2RuSpbE8v--TZz5C3nI240zwj9AE6O2sqoUQefmMHPNKqWwucvH8cFfqiLwK4Y6xQgqWvyRHqahcMHZMfi6c78cOonUDdYZeYYTu949f134Ng23owkOPj87f08vhPlDjPI0bpPITvfF2iHZY71RfXD2GSK9s493WeTcGeus62wYa3SP4li7tepPdeAxh9EgvIPWj87BGCkNLb3EL_u8XXpMXBrqAb_b1hHxbfP56vsxW1xeX52erDBRTMeMIjZICimZ3pKnK2mDDTSllXdQSuWxLMy_nzBgwDAuh2pJD3aiqAKzaUp6QD5PvBjq99bYH_6QdWL08W-ndGxM5Z8W8-s4T-35it949jBii7m1osOtgwDSpFjJXvOKFYAmdTWjaQwgezcGbM73LS0956X1eSfBu7z3WPbYH_F9ACTidgCTUd270Q1rL_9z-AESWosc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354191620</pqid></control><display><type>article</type><title>Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation</title><source>Access via American Chemical Society</source><creator>Dhainaut, Jérémy ; Bonneau, Mickaële ; Ueoka, Ryota ; Kanamori, Kazuyoshi ; Furukawa, Shuhei</creator><creatorcontrib>Dhainaut, Jérémy ; Bonneau, Mickaële ; Ueoka, Ryota ; Kanamori, Kazuyoshi ; Furukawa, Shuhei</creatorcontrib><description>The shaping of metal–organic frameworks (MOFs) has become increasingly studied over the past few years, because it represents a major bottleneck toward their further applications at a larger scale. MOF-based macroscale solids should present performances similar to those of their powder counterparts, along with adequate mechanical resistance. Three-dimensional printing is a promising technology as it allows the fast prototyping of materials at the macroscale level; however, the large amounts of added binders have a detrimental effect on the porous properties of the solids. Herein, a 3D printer was modified to prepare a variety of MOF-based solids with controlled morphologies from shear-thinning inks containing 2-hydroxyethyl cellulose. Four benchmark MOFs were tested for this purpose: HKUST-1, CPL-1, ZIF-8, and UiO-66-NH2. All solids are mechanically stable with up to 0.6 MPa of uniaxial compression and highly porous with BET specific surface areas lowered by 0 to −25%. Furthermore, these solids were applied to high-pressure hydrocarbon sorption (CH4, C2H4, and C2H6), for which they presented a consequent methane gravimetric uptake (UiO-66-NH2, ZIF-8, and HKUST-1) and a highly preferential adsorption of ethylene over ethane (CPL-1).</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b22257</identifier><identifier>PMID: 32045200</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences</subject><ispartof>ACS applied materials &amp; interfaces, 2020-03, Vol.12 (9), p.10983-10992</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-1eac432a6ca6ca3f97bfec1f733b6b3e13d7f8780ffaf0e624d71abc496ae9d73</citedby><cites>FETCH-LOGICAL-a404t-1eac432a6ca6ca3f97bfec1f733b6b3e13d7f8780ffaf0e624d71abc496ae9d73</cites><orcidid>0000-0003-3849-8038 ; 0000-0002-1035-0114 ; 0000-0001-5087-9808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32045200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-02510689$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhainaut, Jérémy</creatorcontrib><creatorcontrib>Bonneau, Mickaële</creatorcontrib><creatorcontrib>Ueoka, Ryota</creatorcontrib><creatorcontrib>Kanamori, Kazuyoshi</creatorcontrib><creatorcontrib>Furukawa, Shuhei</creatorcontrib><title>Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The shaping of metal–organic frameworks (MOFs) has become increasingly studied over the past few years, because it represents a major bottleneck toward their further applications at a larger scale. MOF-based macroscale solids should present performances similar to those of their powder counterparts, along with adequate mechanical resistance. Three-dimensional printing is a promising technology as it allows the fast prototyping of materials at the macroscale level; however, the large amounts of added binders have a detrimental effect on the porous properties of the solids. Herein, a 3D printer was modified to prepare a variety of MOF-based solids with controlled morphologies from shear-thinning inks containing 2-hydroxyethyl cellulose. Four benchmark MOFs were tested for this purpose: HKUST-1, CPL-1, ZIF-8, and UiO-66-NH2. All solids are mechanically stable with up to 0.6 MPa of uniaxial compression and highly porous with BET specific surface areas lowered by 0 to −25%. Furthermore, these solids were applied to high-pressure hydrocarbon sorption (CH4, C2H4, and C2H6), for which they presented a consequent methane gravimetric uptake (UiO-66-NH2, ZIF-8, and HKUST-1) and a highly preferential adsorption of ethylene over ethane (CPL-1).</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxi0EoqVw5Yh8hEpZ_C_J5lgVtltpq1YUztYkGe-6TeKt7VD1xhNw4Q15Erxk2RuSpbE8v--TZz5C3nI240zwj9AE6O2sqoUQefmMHPNKqWwucvH8cFfqiLwK4Y6xQgqWvyRHqahcMHZMfi6c78cOonUDdYZeYYTu949f134Ng23owkOPj87f08vhPlDjPI0bpPITvfF2iHZY71RfXD2GSK9s493WeTcGeus62wYa3SP4li7tepPdeAxh9EgvIPWj87BGCkNLb3EL_u8XXpMXBrqAb_b1hHxbfP56vsxW1xeX52erDBRTMeMIjZICimZ3pKnK2mDDTSllXdQSuWxLMy_nzBgwDAuh2pJD3aiqAKzaUp6QD5PvBjq99bYH_6QdWL08W-ndGxM5Z8W8-s4T-35it949jBii7m1osOtgwDSpFjJXvOKFYAmdTWjaQwgezcGbM73LS0956X1eSfBu7z3WPbYH_F9ACTidgCTUd270Q1rL_9z-AESWosc</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Dhainaut, Jérémy</creator><creator>Bonneau, Mickaële</creator><creator>Ueoka, Ryota</creator><creator>Kanamori, Kazuyoshi</creator><creator>Furukawa, Shuhei</creator><general>American Chemical Society</general><general>Washington, D.C. : American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3849-8038</orcidid><orcidid>https://orcid.org/0000-0002-1035-0114</orcidid><orcidid>https://orcid.org/0000-0001-5087-9808</orcidid></search><sort><creationdate>20200304</creationdate><title>Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation</title><author>Dhainaut, Jérémy ; Bonneau, Mickaële ; Ueoka, Ryota ; Kanamori, Kazuyoshi ; Furukawa, Shuhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-1eac432a6ca6ca3f97bfec1f733b6b3e13d7f8780ffaf0e624d71abc496ae9d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhainaut, Jérémy</creatorcontrib><creatorcontrib>Bonneau, Mickaële</creatorcontrib><creatorcontrib>Ueoka, Ryota</creatorcontrib><creatorcontrib>Kanamori, Kazuyoshi</creatorcontrib><creatorcontrib>Furukawa, Shuhei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhainaut, Jérémy</au><au>Bonneau, Mickaële</au><au>Ueoka, Ryota</au><au>Kanamori, Kazuyoshi</au><au>Furukawa, Shuhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-03-04</date><risdate>2020</risdate><volume>12</volume><issue>9</issue><spage>10983</spage><epage>10992</epage><pages>10983-10992</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The shaping of metal–organic frameworks (MOFs) has become increasingly studied over the past few years, because it represents a major bottleneck toward their further applications at a larger scale. MOF-based macroscale solids should present performances similar to those of their powder counterparts, along with adequate mechanical resistance. Three-dimensional printing is a promising technology as it allows the fast prototyping of materials at the macroscale level; however, the large amounts of added binders have a detrimental effect on the porous properties of the solids. Herein, a 3D printer was modified to prepare a variety of MOF-based solids with controlled morphologies from shear-thinning inks containing 2-hydroxyethyl cellulose. Four benchmark MOFs were tested for this purpose: HKUST-1, CPL-1, ZIF-8, and UiO-66-NH2. All solids are mechanically stable with up to 0.6 MPa of uniaxial compression and highly porous with BET specific surface areas lowered by 0 to −25%. Furthermore, these solids were applied to high-pressure hydrocarbon sorption (CH4, C2H4, and C2H6), for which they presented a consequent methane gravimetric uptake (UiO-66-NH2, ZIF-8, and HKUST-1) and a highly preferential adsorption of ethylene over ethane (CPL-1).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32045200</pmid><doi>10.1021/acsami.9b22257</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3849-8038</orcidid><orcidid>https://orcid.org/0000-0002-1035-0114</orcidid><orcidid>https://orcid.org/0000-0001-5087-9808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-03, Vol.12 (9), p.10983-10992
issn 1944-8244
1944-8252
language eng
recordid cdi_hal_primary_oai_HAL_hal_02510689v1
source Access via American Chemical Society
subjects Catalysis
Chemical Sciences
title Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%20Metal%E2%80%93Organic%20Framework%20Inks%20for%20the%203D%20Printing%20of%20Robust%20Microporous%20Solids%20toward%20High-Pressure%20Gas%20Storage%20and%20Separation&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dhainaut,%20Je%CC%81re%CC%81my&rft.date=2020-03-04&rft.volume=12&rft.issue=9&rft.spage=10983&rft.epage=10992&rft.pages=10983-10992&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b22257&rft_dat=%3Cproquest_hal_p%3E2354191620%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a404t-1eac432a6ca6ca3f97bfec1f733b6b3e13d7f8780ffaf0e624d71abc496ae9d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354191620&rft_id=info:pmid/32045200&rfr_iscdi=true