Loading…

Excitation properties of galaxies with the highest [O iii]/[O ii] ratios: No evidence for massive escape of ionizing photons

The possibility that star-forming galaxies may leak ionizing photons is at the heart of many present-day studies that investigate the reionization of the Universe. We test this hypothesis on local blue compact dwarf galaxies of very high excitation. We assembled a sample of such galaxies by examinin...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2015-04, Vol.576, p.A83
Main Authors: Stasinska, G, Izotov, Yu, Morisset, C, Guseva, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The possibility that star-forming galaxies may leak ionizing photons is at the heart of many present-day studies that investigate the reionization of the Universe. We test this hypothesis on local blue compact dwarf galaxies of very high excitation. We assembled a sample of such galaxies by examining the spectra from data releases 7 and 10 of the Sloan Digital Sky Survey. We argue that reliable conclusions cannot be based on strong lines alone, and adopt a strategy that includes important weak lines such as [OI] and the high-excitation He II and [ArIV] lines. Our analysis is based on purely observational diagrams and on a comparison of photoionization models with well-chosen emission-line ratio diagrams. We show that spectral energy distributions from current stellar population synthesis models cannot account for all the observational constraints, which led us to mimick several scenarios that could explain the data. These include the additional presence of hard X-rays or of shocks. We find that only ionization-bounded models (or models with an escape fraction of ionizing photons lower than 10%) are able to simultaneously explain all the observational constraints.
ISSN:0004-6361
1432-0746
1432-0756
DOI:10.1051/0004-6361/201425389