Loading…

Saturn chorus intensity variations

Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2013-09, Vol.118 (9), p.5592-5602
Main Authors: Menietti, J. D., Schippers, P., Katoh, Y., Leisner, J. S., Hospodarsky, G. B., Gurnett, D. A., Santolik, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3
cites cdi_FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3
container_end_page 5602
container_issue 9
container_start_page 5592
container_title Journal of geophysical research. Space physics
container_volume 118
creator Menietti, J. D.
Schippers, P.
Katoh, Y.
Leisner, J. S.
Hospodarsky, G. B.
Gurnett, D. A.
Santolik, O.
description Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode intensity and bandwidth closest to the magnetic equator, where linear growth appears to dominate, with nonlinear structures appearing at higher latitudes and higher frequencies. We investigate linear growth rate using the Waves in a Homogeneous, Anisotropic, Multi‐component Plasma dispersion solver and locally observed electron phase space density measurements from the Electron Spectrometer sensor of the Cassini Plasma Spectrometer Investigation to determine the parameters responsible for the variation in chorus intensity and bandwidth. We find that a temperature anisotropy (T⊥/T∥ ~ 1.3) can account for linear spatiotemporal growth rate of whistler mode waves, which provides a majority of the observed frequency‐integrated power. At the highest frequencies, intense, nonlinear, frequency‐drifting structures (drift rates ~ 200 Hz/s) are observed a few degrees away from the equator and can account for a significant fraction of the total power. Chorus emission at higher frequencies is distinct from lower frequency whistler mode emission and is sometimes correlated with simultaneously observed low‐frequency electromagnetic ion cyclotron waves. These electromagnetic ion cyclotron waves appear to modulate a slow frequency drift (~15 Hz/s) which develops into nonlinear growth with much larger frequency drift associated only with the higher‐frequency chorus. Key Points Tprp/Tpar ~ 1.3 can account for spatiotemporal growth of waves Nonlinear chorus intensity may be correlated with EMIC wave period Electron distribution shows pitch angle dependence at low energy
doi_str_mv 10.1002/jgra.50529
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02515889v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3531850991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRULQXf0FRBBVWJ8nm61hEW0tR8AOPYbrNauq6q8lW7b8362oPHpxLhuF538m8SbJL4IQA0NP5o8cTDpzqtWSLEqFTnQFd_-2Zgs2kF8IcYqk4Inwr2bvFZuGrfv5U-0Xou6qxVXDNsv-O3mHj6irsJBsFlsH2ft7t5P7i_O5slE6uh5dng0mac6Z0OsVCk0Ih8iznSukimwpElAjMMmSWWIkZzIDPMqFzWQgGTCGfkpnUCmbItpOjzvcJS_Pq3Qv6panRmdFgYtoZUE5a53cS2cOOffX128KGxry4kNuyxMrWi2CIIERQLilEdP8POq_jxfGSSDFFtYhwpI47Kvd1CN4Wqx8QMG26pk3XfKcb4YMfSww5loXHKndhpaBSCcahXU067sOVdvmPoxkPbwa_3mmncaGxnysN-mcjJJPcPFwNTfYwGmt5JQywLzD9lWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638296161</pqid></control><display><type>article</type><title>Saturn chorus intensity variations</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Menietti, J. D. ; Schippers, P. ; Katoh, Y. ; Leisner, J. S. ; Hospodarsky, G. B. ; Gurnett, D. A. ; Santolik, O.</creator><creatorcontrib>Menietti, J. D. ; Schippers, P. ; Katoh, Y. ; Leisner, J. S. ; Hospodarsky, G. B. ; Gurnett, D. A. ; Santolik, O.</creatorcontrib><description>Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode intensity and bandwidth closest to the magnetic equator, where linear growth appears to dominate, with nonlinear structures appearing at higher latitudes and higher frequencies. We investigate linear growth rate using the Waves in a Homogeneous, Anisotropic, Multi‐component Plasma dispersion solver and locally observed electron phase space density measurements from the Electron Spectrometer sensor of the Cassini Plasma Spectrometer Investigation to determine the parameters responsible for the variation in chorus intensity and bandwidth. We find that a temperature anisotropy (T⊥/T∥ ~ 1.3) can account for linear spatiotemporal growth rate of whistler mode waves, which provides a majority of the observed frequency‐integrated power. At the highest frequencies, intense, nonlinear, frequency‐drifting structures (drift rates ~ 200 Hz/s) are observed a few degrees away from the equator and can account for a significant fraction of the total power. Chorus emission at higher frequencies is distinct from lower frequency whistler mode emission and is sometimes correlated with simultaneously observed low‐frequency electromagnetic ion cyclotron waves. These electromagnetic ion cyclotron waves appear to modulate a slow frequency drift (~15 Hz/s) which develops into nonlinear growth with much larger frequency drift associated only with the higher‐frequency chorus. Key Points Tprp/Tpar ~ 1.3 can account for spatiotemporal growth of waves Nonlinear chorus intensity may be correlated with EMIC wave period Electron distribution shows pitch angle dependence at low energy</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/jgra.50529</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Astronomy ; Astrophysics ; chorus spatial wave growth ; Earth, ocean, space ; electron distribution anisotropy ; Emissions ; Equator ; Exact sciences and technology ; External geophysics ; Interplanetary space ; Physics ; Physics of the ionosphere ; Physics of the magnetosphere ; Saturn ; Sciences of the Universe ; Solar system ; Waves</subject><ispartof>Journal of geophysical research. Space physics, 2013-09, Vol.118 (9), p.5592-5602</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3</citedby><cites>FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3</cites><orcidid>0000-0002-4891-9273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27863500$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02515889$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Menietti, J. D.</creatorcontrib><creatorcontrib>Schippers, P.</creatorcontrib><creatorcontrib>Katoh, Y.</creatorcontrib><creatorcontrib>Leisner, J. S.</creatorcontrib><creatorcontrib>Hospodarsky, G. B.</creatorcontrib><creatorcontrib>Gurnett, D. A.</creatorcontrib><creatorcontrib>Santolik, O.</creatorcontrib><title>Saturn chorus intensity variations</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode intensity and bandwidth closest to the magnetic equator, where linear growth appears to dominate, with nonlinear structures appearing at higher latitudes and higher frequencies. We investigate linear growth rate using the Waves in a Homogeneous, Anisotropic, Multi‐component Plasma dispersion solver and locally observed electron phase space density measurements from the Electron Spectrometer sensor of the Cassini Plasma Spectrometer Investigation to determine the parameters responsible for the variation in chorus intensity and bandwidth. We find that a temperature anisotropy (T⊥/T∥ ~ 1.3) can account for linear spatiotemporal growth rate of whistler mode waves, which provides a majority of the observed frequency‐integrated power. At the highest frequencies, intense, nonlinear, frequency‐drifting structures (drift rates ~ 200 Hz/s) are observed a few degrees away from the equator and can account for a significant fraction of the total power. Chorus emission at higher frequencies is distinct from lower frequency whistler mode emission and is sometimes correlated with simultaneously observed low‐frequency electromagnetic ion cyclotron waves. These electromagnetic ion cyclotron waves appear to modulate a slow frequency drift (~15 Hz/s) which develops into nonlinear growth with much larger frequency drift associated only with the higher‐frequency chorus. Key Points Tprp/Tpar ~ 1.3 can account for spatiotemporal growth of waves Nonlinear chorus intensity may be correlated with EMIC wave period Electron distribution shows pitch angle dependence at low energy</description><subject>Anisotropy</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>chorus spatial wave growth</subject><subject>Earth, ocean, space</subject><subject>electron distribution anisotropy</subject><subject>Emissions</subject><subject>Equator</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Interplanetary space</subject><subject>Physics</subject><subject>Physics of the ionosphere</subject><subject>Physics of the magnetosphere</subject><subject>Saturn</subject><subject>Sciences of the Universe</subject><subject>Solar system</subject><subject>Waves</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRULQXf0FRBBVWJ8nm61hEW0tR8AOPYbrNauq6q8lW7b8362oPHpxLhuF538m8SbJL4IQA0NP5o8cTDpzqtWSLEqFTnQFd_-2Zgs2kF8IcYqk4Inwr2bvFZuGrfv5U-0Xou6qxVXDNsv-O3mHj6irsJBsFlsH2ft7t5P7i_O5slE6uh5dng0mac6Z0OsVCk0Ih8iznSukimwpElAjMMmSWWIkZzIDPMqFzWQgGTCGfkpnUCmbItpOjzvcJS_Pq3Qv6panRmdFgYtoZUE5a53cS2cOOffX128KGxry4kNuyxMrWi2CIIERQLilEdP8POq_jxfGSSDFFtYhwpI47Kvd1CN4Wqx8QMG26pk3XfKcb4YMfSww5loXHKndhpaBSCcahXU067sOVdvmPoxkPbwa_3mmncaGxnysN-mcjJJPcPFwNTfYwGmt5JQywLzD9lWA</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Menietti, J. D.</creator><creator>Schippers, P.</creator><creator>Katoh, Y.</creator><creator>Leisner, J. S.</creator><creator>Hospodarsky, G. B.</creator><creator>Gurnett, D. A.</creator><creator>Santolik, O.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>American Geophysical Union/Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4891-9273</orcidid></search><sort><creationdate>201309</creationdate><title>Saturn chorus intensity variations</title><author>Menietti, J. D. ; Schippers, P. ; Katoh, Y. ; Leisner, J. S. ; Hospodarsky, G. B. ; Gurnett, D. A. ; Santolik, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>chorus spatial wave growth</topic><topic>Earth, ocean, space</topic><topic>electron distribution anisotropy</topic><topic>Emissions</topic><topic>Equator</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Interplanetary space</topic><topic>Physics</topic><topic>Physics of the ionosphere</topic><topic>Physics of the magnetosphere</topic><topic>Saturn</topic><topic>Sciences of the Universe</topic><topic>Solar system</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menietti, J. D.</creatorcontrib><creatorcontrib>Schippers, P.</creatorcontrib><creatorcontrib>Katoh, Y.</creatorcontrib><creatorcontrib>Leisner, J. S.</creatorcontrib><creatorcontrib>Hospodarsky, G. B.</creatorcontrib><creatorcontrib>Gurnett, D. A.</creatorcontrib><creatorcontrib>Santolik, O.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menietti, J. D.</au><au>Schippers, P.</au><au>Katoh, Y.</au><au>Leisner, J. S.</au><au>Hospodarsky, G. B.</au><au>Gurnett, D. A.</au><au>Santolik, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saturn chorus intensity variations</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2013-09</date><risdate>2013</risdate><volume>118</volume><issue>9</issue><spage>5592</spage><epage>5602</epage><pages>5592-5602</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode intensity and bandwidth closest to the magnetic equator, where linear growth appears to dominate, with nonlinear structures appearing at higher latitudes and higher frequencies. We investigate linear growth rate using the Waves in a Homogeneous, Anisotropic, Multi‐component Plasma dispersion solver and locally observed electron phase space density measurements from the Electron Spectrometer sensor of the Cassini Plasma Spectrometer Investigation to determine the parameters responsible for the variation in chorus intensity and bandwidth. We find that a temperature anisotropy (T⊥/T∥ ~ 1.3) can account for linear spatiotemporal growth rate of whistler mode waves, which provides a majority of the observed frequency‐integrated power. At the highest frequencies, intense, nonlinear, frequency‐drifting structures (drift rates ~ 200 Hz/s) are observed a few degrees away from the equator and can account for a significant fraction of the total power. Chorus emission at higher frequencies is distinct from lower frequency whistler mode emission and is sometimes correlated with simultaneously observed low‐frequency electromagnetic ion cyclotron waves. These electromagnetic ion cyclotron waves appear to modulate a slow frequency drift (~15 Hz/s) which develops into nonlinear growth with much larger frequency drift associated only with the higher‐frequency chorus. Key Points Tprp/Tpar ~ 1.3 can account for spatiotemporal growth of waves Nonlinear chorus intensity may be correlated with EMIC wave period Electron distribution shows pitch angle dependence at low energy</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgra.50529</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4891-9273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2013-09, Vol.118 (9), p.5592-5602
issn 2169-9380
2169-9402
language eng
recordid cdi_hal_primary_oai_HAL_hal_02515889v1
source Wiley-Blackwell Read & Publish Collection
subjects Anisotropy
Astronomy
Astrophysics
chorus spatial wave growth
Earth, ocean, space
electron distribution anisotropy
Emissions
Equator
Exact sciences and technology
External geophysics
Interplanetary space
Physics
Physics of the ionosphere
Physics of the magnetosphere
Saturn
Sciences of the Universe
Solar system
Waves
title Saturn chorus intensity variations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saturn%20chorus%20intensity%20variations&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Menietti,%20J.%20D.&rft.date=2013-09&rft.volume=118&rft.issue=9&rft.spage=5592&rft.epage=5602&rft.pages=5592-5602&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/jgra.50529&rft_dat=%3Cproquest_hal_p%3E3531850991%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1638296161&rft_id=info:pmid/&rfr_iscdi=true