Loading…
Saturn chorus intensity variations
Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode i...
Saved in:
Published in: | Journal of geophysical research. Space physics 2013-09, Vol.118 (9), p.5592-5602 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3 |
container_end_page | 5602 |
container_issue | 9 |
container_start_page | 5592 |
container_title | Journal of geophysical research. Space physics |
container_volume | 118 |
creator | Menietti, J. D. Schippers, P. Katoh, Y. Leisner, J. S. Hospodarsky, G. B. Gurnett, D. A. Santolik, O. |
description | Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode intensity and bandwidth closest to the magnetic equator, where linear growth appears to dominate, with nonlinear structures appearing at higher latitudes and higher frequencies. We investigate linear growth rate using the Waves in a Homogeneous, Anisotropic, Multi‐component Plasma dispersion solver and locally observed electron phase space density measurements from the Electron Spectrometer sensor of the Cassini Plasma Spectrometer Investigation to determine the parameters responsible for the variation in chorus intensity and bandwidth. We find that a temperature anisotropy (T⊥/T∥ ~ 1.3) can account for linear spatiotemporal growth rate of whistler mode waves, which provides a majority of the observed frequency‐integrated power. At the highest frequencies, intense, nonlinear, frequency‐drifting structures (drift rates ~ 200 Hz/s) are observed a few degrees away from the equator and can account for a significant fraction of the total power. Chorus emission at higher frequencies is distinct from lower frequency whistler mode emission and is sometimes correlated with simultaneously observed low‐frequency electromagnetic ion cyclotron waves. These electromagnetic ion cyclotron waves appear to modulate a slow frequency drift (~15 Hz/s) which develops into nonlinear growth with much larger frequency drift associated only with the higher‐frequency chorus.
Key Points
Tprp/Tpar ~ 1.3 can account for spatiotemporal growth of waves
Nonlinear chorus intensity may be correlated with EMIC wave period
Electron distribution shows pitch angle dependence at low energy |
doi_str_mv | 10.1002/jgra.50529 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02515889v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3531850991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRULQXf0FRBBVWJ8nm61hEW0tR8AOPYbrNauq6q8lW7b8362oPHpxLhuF538m8SbJL4IQA0NP5o8cTDpzqtWSLEqFTnQFd_-2Zgs2kF8IcYqk4Inwr2bvFZuGrfv5U-0Xou6qxVXDNsv-O3mHj6irsJBsFlsH2ft7t5P7i_O5slE6uh5dng0mac6Z0OsVCk0Ih8iznSukimwpElAjMMmSWWIkZzIDPMqFzWQgGTCGfkpnUCmbItpOjzvcJS_Pq3Qv6panRmdFgYtoZUE5a53cS2cOOffX128KGxry4kNuyxMrWi2CIIERQLilEdP8POq_jxfGSSDFFtYhwpI47Kvd1CN4Wqx8QMG26pk3XfKcb4YMfSww5loXHKndhpaBSCcahXU067sOVdvmPoxkPbwa_3mmncaGxnysN-mcjJJPcPFwNTfYwGmt5JQywLzD9lWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638296161</pqid></control><display><type>article</type><title>Saturn chorus intensity variations</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Menietti, J. D. ; Schippers, P. ; Katoh, Y. ; Leisner, J. S. ; Hospodarsky, G. B. ; Gurnett, D. A. ; Santolik, O.</creator><creatorcontrib>Menietti, J. D. ; Schippers, P. ; Katoh, Y. ; Leisner, J. S. ; Hospodarsky, G. B. ; Gurnett, D. A. ; Santolik, O.</creatorcontrib><description>Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode intensity and bandwidth closest to the magnetic equator, where linear growth appears to dominate, with nonlinear structures appearing at higher latitudes and higher frequencies. We investigate linear growth rate using the Waves in a Homogeneous, Anisotropic, Multi‐component Plasma dispersion solver and locally observed electron phase space density measurements from the Electron Spectrometer sensor of the Cassini Plasma Spectrometer Investigation to determine the parameters responsible for the variation in chorus intensity and bandwidth. We find that a temperature anisotropy (T⊥/T∥ ~ 1.3) can account for linear spatiotemporal growth rate of whistler mode waves, which provides a majority of the observed frequency‐integrated power. At the highest frequencies, intense, nonlinear, frequency‐drifting structures (drift rates ~ 200 Hz/s) are observed a few degrees away from the equator and can account for a significant fraction of the total power. Chorus emission at higher frequencies is distinct from lower frequency whistler mode emission and is sometimes correlated with simultaneously observed low‐frequency electromagnetic ion cyclotron waves. These electromagnetic ion cyclotron waves appear to modulate a slow frequency drift (~15 Hz/s) which develops into nonlinear growth with much larger frequency drift associated only with the higher‐frequency chorus.
Key Points
Tprp/Tpar ~ 1.3 can account for spatiotemporal growth of waves
Nonlinear chorus intensity may be correlated with EMIC wave period
Electron distribution shows pitch angle dependence at low energy</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/jgra.50529</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Astronomy ; Astrophysics ; chorus spatial wave growth ; Earth, ocean, space ; electron distribution anisotropy ; Emissions ; Equator ; Exact sciences and technology ; External geophysics ; Interplanetary space ; Physics ; Physics of the ionosphere ; Physics of the magnetosphere ; Saturn ; Sciences of the Universe ; Solar system ; Waves</subject><ispartof>Journal of geophysical research. Space physics, 2013-09, Vol.118 (9), p.5592-5602</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3</citedby><cites>FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3</cites><orcidid>0000-0002-4891-9273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27863500$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02515889$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Menietti, J. D.</creatorcontrib><creatorcontrib>Schippers, P.</creatorcontrib><creatorcontrib>Katoh, Y.</creatorcontrib><creatorcontrib>Leisner, J. S.</creatorcontrib><creatorcontrib>Hospodarsky, G. B.</creatorcontrib><creatorcontrib>Gurnett, D. A.</creatorcontrib><creatorcontrib>Santolik, O.</creatorcontrib><title>Saturn chorus intensity variations</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode intensity and bandwidth closest to the magnetic equator, where linear growth appears to dominate, with nonlinear structures appearing at higher latitudes and higher frequencies. We investigate linear growth rate using the Waves in a Homogeneous, Anisotropic, Multi‐component Plasma dispersion solver and locally observed electron phase space density measurements from the Electron Spectrometer sensor of the Cassini Plasma Spectrometer Investigation to determine the parameters responsible for the variation in chorus intensity and bandwidth. We find that a temperature anisotropy (T⊥/T∥ ~ 1.3) can account for linear spatiotemporal growth rate of whistler mode waves, which provides a majority of the observed frequency‐integrated power. At the highest frequencies, intense, nonlinear, frequency‐drifting structures (drift rates ~ 200 Hz/s) are observed a few degrees away from the equator and can account for a significant fraction of the total power. Chorus emission at higher frequencies is distinct from lower frequency whistler mode emission and is sometimes correlated with simultaneously observed low‐frequency electromagnetic ion cyclotron waves. These electromagnetic ion cyclotron waves appear to modulate a slow frequency drift (~15 Hz/s) which develops into nonlinear growth with much larger frequency drift associated only with the higher‐frequency chorus.
Key Points
Tprp/Tpar ~ 1.3 can account for spatiotemporal growth of waves
Nonlinear chorus intensity may be correlated with EMIC wave period
Electron distribution shows pitch angle dependence at low energy</description><subject>Anisotropy</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>chorus spatial wave growth</subject><subject>Earth, ocean, space</subject><subject>electron distribution anisotropy</subject><subject>Emissions</subject><subject>Equator</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Interplanetary space</subject><subject>Physics</subject><subject>Physics of the ionosphere</subject><subject>Physics of the magnetosphere</subject><subject>Saturn</subject><subject>Sciences of the Universe</subject><subject>Solar system</subject><subject>Waves</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRULQXf0FRBBVWJ8nm61hEW0tR8AOPYbrNauq6q8lW7b8362oPHpxLhuF538m8SbJL4IQA0NP5o8cTDpzqtWSLEqFTnQFd_-2Zgs2kF8IcYqk4Inwr2bvFZuGrfv5U-0Xou6qxVXDNsv-O3mHj6irsJBsFlsH2ft7t5P7i_O5slE6uh5dng0mac6Z0OsVCk0Ih8iznSukimwpElAjMMmSWWIkZzIDPMqFzWQgGTCGfkpnUCmbItpOjzvcJS_Pq3Qv6panRmdFgYtoZUE5a53cS2cOOffX128KGxry4kNuyxMrWi2CIIERQLilEdP8POq_jxfGSSDFFtYhwpI47Kvd1CN4Wqx8QMG26pk3XfKcb4YMfSww5loXHKndhpaBSCcahXU067sOVdvmPoxkPbwa_3mmncaGxnysN-mcjJJPcPFwNTfYwGmt5JQywLzD9lWA</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Menietti, J. D.</creator><creator>Schippers, P.</creator><creator>Katoh, Y.</creator><creator>Leisner, J. S.</creator><creator>Hospodarsky, G. B.</creator><creator>Gurnett, D. A.</creator><creator>Santolik, O.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>American Geophysical Union/Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4891-9273</orcidid></search><sort><creationdate>201309</creationdate><title>Saturn chorus intensity variations</title><author>Menietti, J. D. ; Schippers, P. ; Katoh, Y. ; Leisner, J. S. ; Hospodarsky, G. B. ; Gurnett, D. A. ; Santolik, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>chorus spatial wave growth</topic><topic>Earth, ocean, space</topic><topic>electron distribution anisotropy</topic><topic>Emissions</topic><topic>Equator</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Interplanetary space</topic><topic>Physics</topic><topic>Physics of the ionosphere</topic><topic>Physics of the magnetosphere</topic><topic>Saturn</topic><topic>Sciences of the Universe</topic><topic>Solar system</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menietti, J. D.</creatorcontrib><creatorcontrib>Schippers, P.</creatorcontrib><creatorcontrib>Katoh, Y.</creatorcontrib><creatorcontrib>Leisner, J. S.</creatorcontrib><creatorcontrib>Hospodarsky, G. B.</creatorcontrib><creatorcontrib>Gurnett, D. A.</creatorcontrib><creatorcontrib>Santolik, O.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menietti, J. D.</au><au>Schippers, P.</au><au>Katoh, Y.</au><au>Leisner, J. S.</au><au>Hospodarsky, G. B.</au><au>Gurnett, D. A.</au><au>Santolik, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saturn chorus intensity variations</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2013-09</date><risdate>2013</risdate><volume>118</volume><issue>9</issue><spage>5592</spage><epage>5602</epage><pages>5592-5602</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Whistler mode chorus plasma wave emissions have been observed at Saturn near the magnetic equator and the source region. During crossings of the magnetic equator along nearly constant L shells, the Cassini Radio and Plasma Wave Science Investigation often observes a local decrease in whistler mode intensity and bandwidth closest to the magnetic equator, where linear growth appears to dominate, with nonlinear structures appearing at higher latitudes and higher frequencies. We investigate linear growth rate using the Waves in a Homogeneous, Anisotropic, Multi‐component Plasma dispersion solver and locally observed electron phase space density measurements from the Electron Spectrometer sensor of the Cassini Plasma Spectrometer Investigation to determine the parameters responsible for the variation in chorus intensity and bandwidth. We find that a temperature anisotropy (T⊥/T∥ ~ 1.3) can account for linear spatiotemporal growth rate of whistler mode waves, which provides a majority of the observed frequency‐integrated power. At the highest frequencies, intense, nonlinear, frequency‐drifting structures (drift rates ~ 200 Hz/s) are observed a few degrees away from the equator and can account for a significant fraction of the total power. Chorus emission at higher frequencies is distinct from lower frequency whistler mode emission and is sometimes correlated with simultaneously observed low‐frequency electromagnetic ion cyclotron waves. These electromagnetic ion cyclotron waves appear to modulate a slow frequency drift (~15 Hz/s) which develops into nonlinear growth with much larger frequency drift associated only with the higher‐frequency chorus.
Key Points
Tprp/Tpar ~ 1.3 can account for spatiotemporal growth of waves
Nonlinear chorus intensity may be correlated with EMIC wave period
Electron distribution shows pitch angle dependence at low energy</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgra.50529</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4891-9273</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2013-09, Vol.118 (9), p.5592-5602 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02515889v1 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Anisotropy Astronomy Astrophysics chorus spatial wave growth Earth, ocean, space electron distribution anisotropy Emissions Equator Exact sciences and technology External geophysics Interplanetary space Physics Physics of the ionosphere Physics of the magnetosphere Saturn Sciences of the Universe Solar system Waves |
title | Saturn chorus intensity variations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saturn%20chorus%20intensity%20variations&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Menietti,%20J.%20D.&rft.date=2013-09&rft.volume=118&rft.issue=9&rft.spage=5592&rft.epage=5602&rft.pages=5592-5602&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/jgra.50529&rft_dat=%3Cproquest_hal_p%3E3531850991%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5389-baf91f8aa54c5889f4b6aaa7a03e3a3e1e7a40d05d469c7f63038a5b1d7980da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1638296161&rft_id=info:pmid/&rfr_iscdi=true |