Loading…

Energy Transfers and Reflection of Infragravity Waves at a Dissipative Beach Under Storm Waves

This study presents unpublished field observations of infragravity waves, collected at the dissipative beach of Saint‐Trojan (Oléron Island, France) during the storm Kurt (3 February 2017), characterized by incident short waves of significant heights reaching 9.5 m and peak periods reaching 22 s. Da...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Oceans 2020-05, Vol.125 (5), p.n/a
Main Authors: Bertin, Xavier, Martins, Kévin, Bakker, Anouk, Chataigner, Teddy, Guérin, Thomas, Coulombier, Thibault, Viron, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4454-a031c8f60db93f05fbd59e9ed2a13cb32f47be8ab875b7784f256920feec85f03
cites cdi_FETCH-LOGICAL-a4454-a031c8f60db93f05fbd59e9ed2a13cb32f47be8ab875b7784f256920feec85f03
container_end_page n/a
container_issue 5
container_start_page
container_title Journal of geophysical research. Oceans
container_volume 125
creator Bertin, Xavier
Martins, Kévin
Bakker, Anouk
Chataigner, Teddy
Guérin, Thomas
Coulombier, Thibault
Viron, Olivier
description This study presents unpublished field observations of infragravity waves, collected at the dissipative beach of Saint‐Trojan (Oléron Island, France) during the storm Kurt (3 February 2017), characterized by incident short waves of significant heights reaching 9.5 m and peak periods reaching 22 s. Data analysis reveals the development of exceptionally large infragravity waves, with significant heights reaching 1.85 m close to shore. Field observations are complemented by numerical modeling with XBeach, which well reproduces the development of such infragravity waves. Model results reveal that infragravity waves were generated mainly through the bound wave mechanism, enhanced by the development of a phase lag with the shortwave energy envelope. Spectral analysis of the free surface elevation shows the generation of superharmonic and subharmonic infragravity waves, the latter dominating the free surface elevation variance close to shore. Modeling results suggest that subharmonic infragravity waves result, at least partly, from infragravity‐wave merging, promoted by the combination of free and bound infragravity waves propagating across a several kilometer‐wide surf zone. Due to the steeper slope of the upper part of the beach profile, observed and modeled reflection coefficients under moderate‐energy show a strong tidal modulation, with a weak reflection at low tide (R2
doi_str_mv 10.1029/2019JC015714
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02563121v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419760721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4454-a031c8f60db93f05fbd59e9ed2a13cb32f47be8ab875b7784f256920feec85f03</originalsourceid><addsrcrecordid>eNp90EtLw0AQAOAgCpbamz9gwZNgdZ9J9lhj7YOCUFu8uWyS2TYlTepuGsm_NyVSPDmXGYZvhmE875bgR4KpfKKYyHmEiQgIv_B6lPhyKKkkl-c6ENfewLkdbiMkIeey532OC7CbBq2sLpwB65AuUrQEk0NSZWWBSoNmhbF6Y3WdVQ360DW0qEIavWTOZQddZTWgZ9DJFq2LFCx6r0q77-CNd2V07mDwm_ve-nW8iqbDxdtkFo0WQ8254EONGUlC4-M0lsxgYeJUSJCQUk1YEjNqeBBDqOMwEHEQhNxQ4UuKDUASCoNZ37vv9m51rg4222vbqFJnajpaqFMPtwOMUFKT1t519mDLryO4Su3Koy3a8xTlRAY-DuhJPXQqsaVzFsx5LcHq9HD19-EtZx3_znJo_rVqPllGlEnB2Q-mIYAS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419760721</pqid></control><display><type>article</type><title>Energy Transfers and Reflection of Infragravity Waves at a Dissipative Beach Under Storm Waves</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>Alma/SFX Local Collection</source><creator>Bertin, Xavier ; Martins, Kévin ; Bakker, Anouk ; Chataigner, Teddy ; Guérin, Thomas ; Coulombier, Thibault ; Viron, Olivier</creator><creatorcontrib>Bertin, Xavier ; Martins, Kévin ; Bakker, Anouk ; Chataigner, Teddy ; Guérin, Thomas ; Coulombier, Thibault ; Viron, Olivier</creatorcontrib><description>This study presents unpublished field observations of infragravity waves, collected at the dissipative beach of Saint‐Trojan (Oléron Island, France) during the storm Kurt (3 February 2017), characterized by incident short waves of significant heights reaching 9.5 m and peak periods reaching 22 s. Data analysis reveals the development of exceptionally large infragravity waves, with significant heights reaching 1.85 m close to shore. Field observations are complemented by numerical modeling with XBeach, which well reproduces the development of such infragravity waves. Model results reveal that infragravity waves were generated mainly through the bound wave mechanism, enhanced by the development of a phase lag with the shortwave energy envelope. Spectral analysis of the free surface elevation shows the generation of superharmonic and subharmonic infragravity waves, the latter dominating the free surface elevation variance close to shore. Modeling results suggest that subharmonic infragravity waves result, at least partly, from infragravity‐wave merging, promoted by the combination of free and bound infragravity waves propagating across a several kilometer‐wide surf zone. Due to the steeper slope of the upper part of the beach profile, observed and modeled reflection coefficients under moderate‐energy show a strong tidal modulation, with a weak reflection at low tide (R2&lt;0.2) and a full reflection at high tide (R2∼1.0). Under storm waves, the observed reflection coefficients remain unusually high for a dissipative beach (R2∼0.5−1.0), which is explained by the development of subharmonic infragravity waves with frequencies around 0.005 Hz, too long to suffer a substantial dissipation. Key Points Very large IG waves are observed at a dissipative beach under a storm, long‐period swell and are driven by the bound wave mechanism In the surf zone, IG wave energy is transferred not only toward superharmonic but also toward subharmonic frequencies IG wave reflection is tidally modulated and almost full at high tide due to the increase in beach slope</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2019JC015714</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Beach profiles ; Beaches ; bound wave ; Coefficients ; Data analysis ; dissipative beach ; Earth Sciences ; Energy ; Free surfaces ; Geophysics ; High tide ; infragravity waves ; Low tide ; Mathematical models ; merging ; Modelling ; numerical model ; Oceanography ; Peak periods ; Phase lag ; Reflection ; Sciences of the Universe ; Spectral analysis ; Spectrum analysis ; Storm waves ; Storms ; Surf zone ; Variance analysis ; Wave propagation ; Wave reflection</subject><ispartof>Journal of geophysical research. Oceans, 2020-05, Vol.125 (5), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4454-a031c8f60db93f05fbd59e9ed2a13cb32f47be8ab875b7784f256920feec85f03</citedby><cites>FETCH-LOGICAL-a4454-a031c8f60db93f05fbd59e9ed2a13cb32f47be8ab875b7784f256920feec85f03</cites><orcidid>0000-0002-5457-4187 ; 0000-0001-9138-4756 ; 0000-0001-6448-1841 ; 0000-0003-3112-9686 ; 0000-0002-2897-3117 ; 0000-0002-6979-7770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://univ-rochelle.hal.science/hal-02563121$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertin, Xavier</creatorcontrib><creatorcontrib>Martins, Kévin</creatorcontrib><creatorcontrib>Bakker, Anouk</creatorcontrib><creatorcontrib>Chataigner, Teddy</creatorcontrib><creatorcontrib>Guérin, Thomas</creatorcontrib><creatorcontrib>Coulombier, Thibault</creatorcontrib><creatorcontrib>Viron, Olivier</creatorcontrib><title>Energy Transfers and Reflection of Infragravity Waves at a Dissipative Beach Under Storm Waves</title><title>Journal of geophysical research. Oceans</title><description>This study presents unpublished field observations of infragravity waves, collected at the dissipative beach of Saint‐Trojan (Oléron Island, France) during the storm Kurt (3 February 2017), characterized by incident short waves of significant heights reaching 9.5 m and peak periods reaching 22 s. Data analysis reveals the development of exceptionally large infragravity waves, with significant heights reaching 1.85 m close to shore. Field observations are complemented by numerical modeling with XBeach, which well reproduces the development of such infragravity waves. Model results reveal that infragravity waves were generated mainly through the bound wave mechanism, enhanced by the development of a phase lag with the shortwave energy envelope. Spectral analysis of the free surface elevation shows the generation of superharmonic and subharmonic infragravity waves, the latter dominating the free surface elevation variance close to shore. Modeling results suggest that subharmonic infragravity waves result, at least partly, from infragravity‐wave merging, promoted by the combination of free and bound infragravity waves propagating across a several kilometer‐wide surf zone. Due to the steeper slope of the upper part of the beach profile, observed and modeled reflection coefficients under moderate‐energy show a strong tidal modulation, with a weak reflection at low tide (R2&lt;0.2) and a full reflection at high tide (R2∼1.0). Under storm waves, the observed reflection coefficients remain unusually high for a dissipative beach (R2∼0.5−1.0), which is explained by the development of subharmonic infragravity waves with frequencies around 0.005 Hz, too long to suffer a substantial dissipation. Key Points Very large IG waves are observed at a dissipative beach under a storm, long‐period swell and are driven by the bound wave mechanism In the surf zone, IG wave energy is transferred not only toward superharmonic but also toward subharmonic frequencies IG wave reflection is tidally modulated and almost full at high tide due to the increase in beach slope</description><subject>Beach profiles</subject><subject>Beaches</subject><subject>bound wave</subject><subject>Coefficients</subject><subject>Data analysis</subject><subject>dissipative beach</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Free surfaces</subject><subject>Geophysics</subject><subject>High tide</subject><subject>infragravity waves</subject><subject>Low tide</subject><subject>Mathematical models</subject><subject>merging</subject><subject>Modelling</subject><subject>numerical model</subject><subject>Oceanography</subject><subject>Peak periods</subject><subject>Phase lag</subject><subject>Reflection</subject><subject>Sciences of the Universe</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Storm waves</subject><subject>Storms</subject><subject>Surf zone</subject><subject>Variance analysis</subject><subject>Wave propagation</subject><subject>Wave reflection</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AQAOAgCpbamz9gwZNgdZ9J9lhj7YOCUFu8uWyS2TYlTepuGsm_NyVSPDmXGYZvhmE875bgR4KpfKKYyHmEiQgIv_B6lPhyKKkkl-c6ENfewLkdbiMkIeey532OC7CbBq2sLpwB65AuUrQEk0NSZWWBSoNmhbF6Y3WdVQ360DW0qEIavWTOZQddZTWgZ9DJFq2LFCx6r0q77-CNd2V07mDwm_ve-nW8iqbDxdtkFo0WQ8254EONGUlC4-M0lsxgYeJUSJCQUk1YEjNqeBBDqOMwEHEQhNxQ4UuKDUASCoNZ37vv9m51rg4222vbqFJnajpaqFMPtwOMUFKT1t519mDLryO4Su3Koy3a8xTlRAY-DuhJPXQqsaVzFsx5LcHq9HD19-EtZx3_znJo_rVqPllGlEnB2Q-mIYAS</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Bertin, Xavier</creator><creator>Martins, Kévin</creator><creator>Bakker, Anouk</creator><creator>Chataigner, Teddy</creator><creator>Guérin, Thomas</creator><creator>Coulombier, Thibault</creator><creator>Viron, Olivier</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5457-4187</orcidid><orcidid>https://orcid.org/0000-0001-9138-4756</orcidid><orcidid>https://orcid.org/0000-0001-6448-1841</orcidid><orcidid>https://orcid.org/0000-0003-3112-9686</orcidid><orcidid>https://orcid.org/0000-0002-2897-3117</orcidid><orcidid>https://orcid.org/0000-0002-6979-7770</orcidid></search><sort><creationdate>202005</creationdate><title>Energy Transfers and Reflection of Infragravity Waves at a Dissipative Beach Under Storm Waves</title><author>Bertin, Xavier ; Martins, Kévin ; Bakker, Anouk ; Chataigner, Teddy ; Guérin, Thomas ; Coulombier, Thibault ; Viron, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4454-a031c8f60db93f05fbd59e9ed2a13cb32f47be8ab875b7784f256920feec85f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beach profiles</topic><topic>Beaches</topic><topic>bound wave</topic><topic>Coefficients</topic><topic>Data analysis</topic><topic>dissipative beach</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Free surfaces</topic><topic>Geophysics</topic><topic>High tide</topic><topic>infragravity waves</topic><topic>Low tide</topic><topic>Mathematical models</topic><topic>merging</topic><topic>Modelling</topic><topic>numerical model</topic><topic>Oceanography</topic><topic>Peak periods</topic><topic>Phase lag</topic><topic>Reflection</topic><topic>Sciences of the Universe</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Storm waves</topic><topic>Storms</topic><topic>Surf zone</topic><topic>Variance analysis</topic><topic>Wave propagation</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertin, Xavier</creatorcontrib><creatorcontrib>Martins, Kévin</creatorcontrib><creatorcontrib>Bakker, Anouk</creatorcontrib><creatorcontrib>Chataigner, Teddy</creatorcontrib><creatorcontrib>Guérin, Thomas</creatorcontrib><creatorcontrib>Coulombier, Thibault</creatorcontrib><creatorcontrib>Viron, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertin, Xavier</au><au>Martins, Kévin</au><au>Bakker, Anouk</au><au>Chataigner, Teddy</au><au>Guérin, Thomas</au><au>Coulombier, Thibault</au><au>Viron, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Transfers and Reflection of Infragravity Waves at a Dissipative Beach Under Storm Waves</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><date>2020-05</date><risdate>2020</risdate><volume>125</volume><issue>5</issue><epage>n/a</epage><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>This study presents unpublished field observations of infragravity waves, collected at the dissipative beach of Saint‐Trojan (Oléron Island, France) during the storm Kurt (3 February 2017), characterized by incident short waves of significant heights reaching 9.5 m and peak periods reaching 22 s. Data analysis reveals the development of exceptionally large infragravity waves, with significant heights reaching 1.85 m close to shore. Field observations are complemented by numerical modeling with XBeach, which well reproduces the development of such infragravity waves. Model results reveal that infragravity waves were generated mainly through the bound wave mechanism, enhanced by the development of a phase lag with the shortwave energy envelope. Spectral analysis of the free surface elevation shows the generation of superharmonic and subharmonic infragravity waves, the latter dominating the free surface elevation variance close to shore. Modeling results suggest that subharmonic infragravity waves result, at least partly, from infragravity‐wave merging, promoted by the combination of free and bound infragravity waves propagating across a several kilometer‐wide surf zone. Due to the steeper slope of the upper part of the beach profile, observed and modeled reflection coefficients under moderate‐energy show a strong tidal modulation, with a weak reflection at low tide (R2&lt;0.2) and a full reflection at high tide (R2∼1.0). Under storm waves, the observed reflection coefficients remain unusually high for a dissipative beach (R2∼0.5−1.0), which is explained by the development of subharmonic infragravity waves with frequencies around 0.005 Hz, too long to suffer a substantial dissipation. Key Points Very large IG waves are observed at a dissipative beach under a storm, long‐period swell and are driven by the bound wave mechanism In the surf zone, IG wave energy is transferred not only toward superharmonic but also toward subharmonic frequencies IG wave reflection is tidally modulated and almost full at high tide due to the increase in beach slope</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JC015714</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5457-4187</orcidid><orcidid>https://orcid.org/0000-0001-9138-4756</orcidid><orcidid>https://orcid.org/0000-0001-6448-1841</orcidid><orcidid>https://orcid.org/0000-0003-3112-9686</orcidid><orcidid>https://orcid.org/0000-0002-2897-3117</orcidid><orcidid>https://orcid.org/0000-0002-6979-7770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2020-05, Vol.125 (5), p.n/a
issn 2169-9275
2169-9291
language eng
recordid cdi_hal_primary_oai_HAL_hal_02563121v1
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); Alma/SFX Local Collection
subjects Beach profiles
Beaches
bound wave
Coefficients
Data analysis
dissipative beach
Earth Sciences
Energy
Free surfaces
Geophysics
High tide
infragravity waves
Low tide
Mathematical models
merging
Modelling
numerical model
Oceanography
Peak periods
Phase lag
Reflection
Sciences of the Universe
Spectral analysis
Spectrum analysis
Storm waves
Storms
Surf zone
Variance analysis
Wave propagation
Wave reflection
title Energy Transfers and Reflection of Infragravity Waves at a Dissipative Beach Under Storm Waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Transfers%20and%20Reflection%20of%20Infragravity%20Waves%20at%20a%20Dissipative%20Beach%20Under%20Storm%20Waves&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Bertin,%20Xavier&rft.date=2020-05&rft.volume=125&rft.issue=5&rft.epage=n/a&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1029/2019JC015714&rft_dat=%3Cproquest_hal_p%3E2419760721%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4454-a031c8f60db93f05fbd59e9ed2a13cb32f47be8ab875b7784f256920feec85f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419760721&rft_id=info:pmid/&rfr_iscdi=true