Loading…

Three dimensional stress analysis of a composite patch using stress functions

A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced s...

Full description

Saved in:
Bibliographic Details
Published in:International journal of mechanical sciences 2010-12, Vol.52 (12), p.1646-1659
Main Authors: Kim, Heung Soo, Cho, Maenghyo, Lee, Jaehun, Deheeger, Antoine, Grédiac, Michel, Mathias, Jean-Denis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3
cites cdi_FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3
container_end_page 1659
container_issue 12
container_start_page 1646
container_title International journal of mechanical sciences
container_volume 52
creator Kim, Heung Soo
Cho, Maenghyo
Lee, Jaehun
Deheeger, Antoine
Grédiac, Michel
Mathias, Jean-Denis
description A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced section from a bonded patch is used. In addition, to describe the load transfer mechanism from the substrate to the composite patch, a simple shear lag model is introduced. The 3D stress behavior at the free edge of the composite patch is modeled by Lekhnitskii stress functions, and the governing equations of the given composite patch are obtained by applying the principle of complementary virtual work. After a suitable expansion of the functions, the governing equations are transformed into two coupled ordinary differential equations, and they are solved by a general eigenvalue solution procedure. As the number of base functions increases, the interlaminar stresses converge. The interlaminar stresses reach maximum at the free edge and decrease sharply at the inner part of the patch. The interlaminar stresses are concentrated at the interface between the layers because of the mismatch of material properties and the geometric singularity. Since the proposed method accurately predicts the 3D stresses in a composite patch bonded on the metal substrate, it can be used as a simple and efficient analytical tool for designing such structural components. [Display omitted] ►A stress function-based analysis is applied for free-edge of bonded composite patch. ►A linear superposition of sliced section is used for 3D stress analysis. ►Interlaminar stresses reach maximum at the free edge. ►Interlaminar stresses decrease sharply at the inner part of the patch.
doi_str_mv 10.1016/j.ijmecsci.2010.08.006
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02594302v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740310002109</els_id><sourcerecordid>831190283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3</originalsourceid><addsrcrecordid>eNqFkE1LJDEQhoO44PjxF6Qvi3jo2UrSH-mbIrsqzOJFz6E6Xe1k6O7MpnoE__1mGPXqqYried-CR4hLCUsJsvq1WfrNSI6dXypIRzBLgOpILKSpm1zJSh2LBYCCvC5An4hT5g2ArKHUC_H3eR2Jss6PNLEPEw4Zz5GYM0z7O3vOQp9h5sK4DexnyrY4u3W2Yz-9fqL9bnJzCvO5-NHjwHTxMc_Ey5_fz3cP-erp_vHudpW7AsycN21PRlZlLU1Vd1AoRNkbUtC2rpWdKYxuylaWZDpNqEuHULmi7JtCd46Q9Jm4PvSucbDb6EeM7zagtw-3K7u_gSoTDOpNJvbqwG5j-Lcjnu3o2dEw4ERhx9ZoKRtQRieyOpAuBuZI_Ve1BLtXbTf2U7Xdq7ZgbFKdgj8_XiA7HPqIk_P8lVZaN7VpVOJuDhwlN2-eok1NNDnqfCQ32y747179Bx2NmDU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831190283</pqid></control><display><type>article</type><title>Three dimensional stress analysis of a composite patch using stress functions</title><source>ScienceDirect Journals</source><creator>Kim, Heung Soo ; Cho, Maenghyo ; Lee, Jaehun ; Deheeger, Antoine ; Grédiac, Michel ; Mathias, Jean-Denis</creator><creatorcontrib>Kim, Heung Soo ; Cho, Maenghyo ; Lee, Jaehun ; Deheeger, Antoine ; Grédiac, Michel ; Mathias, Jean-Denis</creatorcontrib><description>A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced section from a bonded patch is used. In addition, to describe the load transfer mechanism from the substrate to the composite patch, a simple shear lag model is introduced. The 3D stress behavior at the free edge of the composite patch is modeled by Lekhnitskii stress functions, and the governing equations of the given composite patch are obtained by applying the principle of complementary virtual work. After a suitable expansion of the functions, the governing equations are transformed into two coupled ordinary differential equations, and they are solved by a general eigenvalue solution procedure. As the number of base functions increases, the interlaminar stresses converge. The interlaminar stresses reach maximum at the free edge and decrease sharply at the inner part of the patch. The interlaminar stresses are concentrated at the interface between the layers because of the mismatch of material properties and the geometric singularity. Since the proposed method accurately predicts the 3D stresses in a composite patch bonded on the metal substrate, it can be used as a simple and efficient analytical tool for designing such structural components. [Display omitted] ►A stress function-based analysis is applied for free-edge of bonded composite patch. ►A linear superposition of sliced section is used for 3D stress analysis. ►Interlaminar stresses reach maximum at the free edge. ►Interlaminar stresses decrease sharply at the inner part of the patch.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2010.08.006</identifier><identifier>CODEN: IMSCAW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bonding ; Complementary virtual work ; Composite patch ; Environmental Sciences ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Free edge ; Fundamental areas of phenomenology (including applications) ; Interlaminar stress ; Mathematical analysis ; Mathematical models ; Physics ; Shear lag model ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress analysis ; Stress function ; Stress functions ; Stresses ; Structural and continuum mechanics ; Three dimensional</subject><ispartof>International journal of mechanical sciences, 2010-12, Vol.52 (12), p.1646-1659</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3</citedby><cites>FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3</cites><orcidid>0000-0002-6172-9079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23397892$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02594302$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Heung Soo</creatorcontrib><creatorcontrib>Cho, Maenghyo</creatorcontrib><creatorcontrib>Lee, Jaehun</creatorcontrib><creatorcontrib>Deheeger, Antoine</creatorcontrib><creatorcontrib>Grédiac, Michel</creatorcontrib><creatorcontrib>Mathias, Jean-Denis</creatorcontrib><title>Three dimensional stress analysis of a composite patch using stress functions</title><title>International journal of mechanical sciences</title><description>A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced section from a bonded patch is used. In addition, to describe the load transfer mechanism from the substrate to the composite patch, a simple shear lag model is introduced. The 3D stress behavior at the free edge of the composite patch is modeled by Lekhnitskii stress functions, and the governing equations of the given composite patch are obtained by applying the principle of complementary virtual work. After a suitable expansion of the functions, the governing equations are transformed into two coupled ordinary differential equations, and they are solved by a general eigenvalue solution procedure. As the number of base functions increases, the interlaminar stresses converge. The interlaminar stresses reach maximum at the free edge and decrease sharply at the inner part of the patch. The interlaminar stresses are concentrated at the interface between the layers because of the mismatch of material properties and the geometric singularity. Since the proposed method accurately predicts the 3D stresses in a composite patch bonded on the metal substrate, it can be used as a simple and efficient analytical tool for designing such structural components. [Display omitted] ►A stress function-based analysis is applied for free-edge of bonded composite patch. ►A linear superposition of sliced section is used for 3D stress analysis. ►Interlaminar stresses reach maximum at the free edge. ►Interlaminar stresses decrease sharply at the inner part of the patch.</description><subject>Bonding</subject><subject>Complementary virtual work</subject><subject>Composite patch</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Free edge</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Interlaminar stress</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Shear lag model</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress analysis</subject><subject>Stress function</subject><subject>Stress functions</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Three dimensional</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LJDEQhoO44PjxF6Qvi3jo2UrSH-mbIrsqzOJFz6E6Xe1k6O7MpnoE__1mGPXqqYried-CR4hLCUsJsvq1WfrNSI6dXypIRzBLgOpILKSpm1zJSh2LBYCCvC5An4hT5g2ArKHUC_H3eR2Jss6PNLEPEw4Zz5GYM0z7O3vOQp9h5sK4DexnyrY4u3W2Yz-9fqL9bnJzCvO5-NHjwHTxMc_Ey5_fz3cP-erp_vHudpW7AsycN21PRlZlLU1Vd1AoRNkbUtC2rpWdKYxuylaWZDpNqEuHULmi7JtCd46Q9Jm4PvSucbDb6EeM7zagtw-3K7u_gSoTDOpNJvbqwG5j-Lcjnu3o2dEw4ERhx9ZoKRtQRieyOpAuBuZI_Ve1BLtXbTf2U7Xdq7ZgbFKdgj8_XiA7HPqIk_P8lVZaN7VpVOJuDhwlN2-eok1NNDnqfCQ32y747179Bx2NmDU</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Kim, Heung Soo</creator><creator>Cho, Maenghyo</creator><creator>Lee, Jaehun</creator><creator>Deheeger, Antoine</creator><creator>Grédiac, Michel</creator><creator>Mathias, Jean-Denis</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6172-9079</orcidid></search><sort><creationdate>20101201</creationdate><title>Three dimensional stress analysis of a composite patch using stress functions</title><author>Kim, Heung Soo ; Cho, Maenghyo ; Lee, Jaehun ; Deheeger, Antoine ; Grédiac, Michel ; Mathias, Jean-Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bonding</topic><topic>Complementary virtual work</topic><topic>Composite patch</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Free edge</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Interlaminar stress</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Shear lag model</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress analysis</topic><topic>Stress function</topic><topic>Stress functions</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Heung Soo</creatorcontrib><creatorcontrib>Cho, Maenghyo</creatorcontrib><creatorcontrib>Lee, Jaehun</creatorcontrib><creatorcontrib>Deheeger, Antoine</creatorcontrib><creatorcontrib>Grédiac, Michel</creatorcontrib><creatorcontrib>Mathias, Jean-Denis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Heung Soo</au><au>Cho, Maenghyo</au><au>Lee, Jaehun</au><au>Deheeger, Antoine</au><au>Grédiac, Michel</au><au>Mathias, Jean-Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three dimensional stress analysis of a composite patch using stress functions</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>52</volume><issue>12</issue><spage>1646</spage><epage>1659</epage><pages>1646-1659</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><coden>IMSCAW</coden><abstract>A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced section from a bonded patch is used. In addition, to describe the load transfer mechanism from the substrate to the composite patch, a simple shear lag model is introduced. The 3D stress behavior at the free edge of the composite patch is modeled by Lekhnitskii stress functions, and the governing equations of the given composite patch are obtained by applying the principle of complementary virtual work. After a suitable expansion of the functions, the governing equations are transformed into two coupled ordinary differential equations, and they are solved by a general eigenvalue solution procedure. As the number of base functions increases, the interlaminar stresses converge. The interlaminar stresses reach maximum at the free edge and decrease sharply at the inner part of the patch. The interlaminar stresses are concentrated at the interface between the layers because of the mismatch of material properties and the geometric singularity. Since the proposed method accurately predicts the 3D stresses in a composite patch bonded on the metal substrate, it can be used as a simple and efficient analytical tool for designing such structural components. [Display omitted] ►A stress function-based analysis is applied for free-edge of bonded composite patch. ►A linear superposition of sliced section is used for 3D stress analysis. ►Interlaminar stresses reach maximum at the free edge. ►Interlaminar stresses decrease sharply at the inner part of the patch.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2010.08.006</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6172-9079</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 2010-12, Vol.52 (12), p.1646-1659
issn 0020-7403
1879-2162
language eng
recordid cdi_hal_primary_oai_HAL_hal_02594302v1
source ScienceDirect Journals
subjects Bonding
Complementary virtual work
Composite patch
Environmental Sciences
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Free edge
Fundamental areas of phenomenology (including applications)
Interlaminar stress
Mathematical analysis
Mathematical models
Physics
Shear lag model
Solid mechanics
Static elasticity (thermoelasticity...)
Stress analysis
Stress function
Stress functions
Stresses
Structural and continuum mechanics
Three dimensional
title Three dimensional stress analysis of a composite patch using stress functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20dimensional%20stress%20analysis%20of%20a%20composite%20patch%20using%20stress%20functions&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Kim,%20Heung%20Soo&rft.date=2010-12-01&rft.volume=52&rft.issue=12&rft.spage=1646&rft.epage=1659&rft.pages=1646-1659&rft.issn=0020-7403&rft.eissn=1879-2162&rft.coden=IMSCAW&rft_id=info:doi/10.1016/j.ijmecsci.2010.08.006&rft_dat=%3Cproquest_hal_p%3E831190283%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=831190283&rft_id=info:pmid/&rfr_iscdi=true