Loading…
Three dimensional stress analysis of a composite patch using stress functions
A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced s...
Saved in:
Published in: | International journal of mechanical sciences 2010-12, Vol.52 (12), p.1646-1659 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3 |
container_end_page | 1659 |
container_issue | 12 |
container_start_page | 1646 |
container_title | International journal of mechanical sciences |
container_volume | 52 |
creator | Kim, Heung Soo Cho, Maenghyo Lee, Jaehun Deheeger, Antoine Grédiac, Michel Mathias, Jean-Denis |
description | A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced section from a bonded patch is used. In addition, to describe the load transfer mechanism from the substrate to the composite patch, a simple shear lag model is introduced. The 3D stress behavior at the free edge of the composite patch is modeled by Lekhnitskii stress functions, and the governing equations of the given composite patch are obtained by applying the principle of complementary virtual work. After a suitable expansion of the functions, the governing equations are transformed into two coupled ordinary differential equations, and they are solved by a general eigenvalue solution procedure. As the number of base functions increases, the interlaminar stresses converge. The interlaminar stresses reach maximum at the free edge and decrease sharply at the inner part of the patch. The interlaminar stresses are concentrated at the interface between the layers because of the mismatch of material properties and the geometric singularity. Since the proposed method accurately predicts the 3D stresses in a composite patch bonded on the metal substrate, it can be used as a simple and efficient analytical tool for designing such structural components.
[Display omitted]
►A stress function-based analysis is applied for free-edge of bonded composite patch. ►A linear superposition of sliced section is used for 3D stress analysis. ►Interlaminar stresses reach maximum at the free edge. ►Interlaminar stresses decrease sharply at the inner part of the patch. |
doi_str_mv | 10.1016/j.ijmecsci.2010.08.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02594302v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740310002109</els_id><sourcerecordid>831190283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3</originalsourceid><addsrcrecordid>eNqFkE1LJDEQhoO44PjxF6Qvi3jo2UrSH-mbIrsqzOJFz6E6Xe1k6O7MpnoE__1mGPXqqYried-CR4hLCUsJsvq1WfrNSI6dXypIRzBLgOpILKSpm1zJSh2LBYCCvC5An4hT5g2ArKHUC_H3eR2Jss6PNLEPEw4Zz5GYM0z7O3vOQp9h5sK4DexnyrY4u3W2Yz-9fqL9bnJzCvO5-NHjwHTxMc_Ey5_fz3cP-erp_vHudpW7AsycN21PRlZlLU1Vd1AoRNkbUtC2rpWdKYxuylaWZDpNqEuHULmi7JtCd46Q9Jm4PvSucbDb6EeM7zagtw-3K7u_gSoTDOpNJvbqwG5j-Lcjnu3o2dEw4ERhx9ZoKRtQRieyOpAuBuZI_Ve1BLtXbTf2U7Xdq7ZgbFKdgj8_XiA7HPqIk_P8lVZaN7VpVOJuDhwlN2-eok1NNDnqfCQ32y747179Bx2NmDU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831190283</pqid></control><display><type>article</type><title>Three dimensional stress analysis of a composite patch using stress functions</title><source>ScienceDirect Journals</source><creator>Kim, Heung Soo ; Cho, Maenghyo ; Lee, Jaehun ; Deheeger, Antoine ; Grédiac, Michel ; Mathias, Jean-Denis</creator><creatorcontrib>Kim, Heung Soo ; Cho, Maenghyo ; Lee, Jaehun ; Deheeger, Antoine ; Grédiac, Michel ; Mathias, Jean-Denis</creatorcontrib><description>A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced section from a bonded patch is used. In addition, to describe the load transfer mechanism from the substrate to the composite patch, a simple shear lag model is introduced. The 3D stress behavior at the free edge of the composite patch is modeled by Lekhnitskii stress functions, and the governing equations of the given composite patch are obtained by applying the principle of complementary virtual work. After a suitable expansion of the functions, the governing equations are transformed into two coupled ordinary differential equations, and they are solved by a general eigenvalue solution procedure. As the number of base functions increases, the interlaminar stresses converge. The interlaminar stresses reach maximum at the free edge and decrease sharply at the inner part of the patch. The interlaminar stresses are concentrated at the interface between the layers because of the mismatch of material properties and the geometric singularity. Since the proposed method accurately predicts the 3D stresses in a composite patch bonded on the metal substrate, it can be used as a simple and efficient analytical tool for designing such structural components.
[Display omitted]
►A stress function-based analysis is applied for free-edge of bonded composite patch. ►A linear superposition of sliced section is used for 3D stress analysis. ►Interlaminar stresses reach maximum at the free edge. ►Interlaminar stresses decrease sharply at the inner part of the patch.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2010.08.006</identifier><identifier>CODEN: IMSCAW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bonding ; Complementary virtual work ; Composite patch ; Environmental Sciences ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Free edge ; Fundamental areas of phenomenology (including applications) ; Interlaminar stress ; Mathematical analysis ; Mathematical models ; Physics ; Shear lag model ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress analysis ; Stress function ; Stress functions ; Stresses ; Structural and continuum mechanics ; Three dimensional</subject><ispartof>International journal of mechanical sciences, 2010-12, Vol.52 (12), p.1646-1659</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3</citedby><cites>FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3</cites><orcidid>0000-0002-6172-9079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23397892$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02594302$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Heung Soo</creatorcontrib><creatorcontrib>Cho, Maenghyo</creatorcontrib><creatorcontrib>Lee, Jaehun</creatorcontrib><creatorcontrib>Deheeger, Antoine</creatorcontrib><creatorcontrib>Grédiac, Michel</creatorcontrib><creatorcontrib>Mathias, Jean-Denis</creatorcontrib><title>Three dimensional stress analysis of a composite patch using stress functions</title><title>International journal of mechanical sciences</title><description>A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced section from a bonded patch is used. In addition, to describe the load transfer mechanism from the substrate to the composite patch, a simple shear lag model is introduced. The 3D stress behavior at the free edge of the composite patch is modeled by Lekhnitskii stress functions, and the governing equations of the given composite patch are obtained by applying the principle of complementary virtual work. After a suitable expansion of the functions, the governing equations are transformed into two coupled ordinary differential equations, and they are solved by a general eigenvalue solution procedure. As the number of base functions increases, the interlaminar stresses converge. The interlaminar stresses reach maximum at the free edge and decrease sharply at the inner part of the patch. The interlaminar stresses are concentrated at the interface between the layers because of the mismatch of material properties and the geometric singularity. Since the proposed method accurately predicts the 3D stresses in a composite patch bonded on the metal substrate, it can be used as a simple and efficient analytical tool for designing such structural components.
[Display omitted]
►A stress function-based analysis is applied for free-edge of bonded composite patch. ►A linear superposition of sliced section is used for 3D stress analysis. ►Interlaminar stresses reach maximum at the free edge. ►Interlaminar stresses decrease sharply at the inner part of the patch.</description><subject>Bonding</subject><subject>Complementary virtual work</subject><subject>Composite patch</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Free edge</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Interlaminar stress</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Shear lag model</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress analysis</subject><subject>Stress function</subject><subject>Stress functions</subject><subject>Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Three dimensional</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LJDEQhoO44PjxF6Qvi3jo2UrSH-mbIrsqzOJFz6E6Xe1k6O7MpnoE__1mGPXqqYried-CR4hLCUsJsvq1WfrNSI6dXypIRzBLgOpILKSpm1zJSh2LBYCCvC5An4hT5g2ArKHUC_H3eR2Jss6PNLEPEw4Zz5GYM0z7O3vOQp9h5sK4DexnyrY4u3W2Yz-9fqL9bnJzCvO5-NHjwHTxMc_Ey5_fz3cP-erp_vHudpW7AsycN21PRlZlLU1Vd1AoRNkbUtC2rpWdKYxuylaWZDpNqEuHULmi7JtCd46Q9Jm4PvSucbDb6EeM7zagtw-3K7u_gSoTDOpNJvbqwG5j-Lcjnu3o2dEw4ERhx9ZoKRtQRieyOpAuBuZI_Ve1BLtXbTf2U7Xdq7ZgbFKdgj8_XiA7HPqIk_P8lVZaN7VpVOJuDhwlN2-eok1NNDnqfCQ32y747179Bx2NmDU</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Kim, Heung Soo</creator><creator>Cho, Maenghyo</creator><creator>Lee, Jaehun</creator><creator>Deheeger, Antoine</creator><creator>Grédiac, Michel</creator><creator>Mathias, Jean-Denis</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6172-9079</orcidid></search><sort><creationdate>20101201</creationdate><title>Three dimensional stress analysis of a composite patch using stress functions</title><author>Kim, Heung Soo ; Cho, Maenghyo ; Lee, Jaehun ; Deheeger, Antoine ; Grédiac, Michel ; Mathias, Jean-Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bonding</topic><topic>Complementary virtual work</topic><topic>Composite patch</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Free edge</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Interlaminar stress</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Shear lag model</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress analysis</topic><topic>Stress function</topic><topic>Stress functions</topic><topic>Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Heung Soo</creatorcontrib><creatorcontrib>Cho, Maenghyo</creatorcontrib><creatorcontrib>Lee, Jaehun</creatorcontrib><creatorcontrib>Deheeger, Antoine</creatorcontrib><creatorcontrib>Grédiac, Michel</creatorcontrib><creatorcontrib>Mathias, Jean-Denis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Heung Soo</au><au>Cho, Maenghyo</au><au>Lee, Jaehun</au><au>Deheeger, Antoine</au><au>Grédiac, Michel</au><au>Mathias, Jean-Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three dimensional stress analysis of a composite patch using stress functions</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>52</volume><issue>12</issue><spage>1646</spage><epage>1659</epage><pages>1646-1659</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><coden>IMSCAW</coden><abstract>A stress function-based analysis is proposed to provide a simple and efficient approximation method of three-dimensional (3D) state of stress that exists near the free edge of bonded composite patches. In order to apply plane strain assumption in a composite patch, a linear superposition of sliced section from a bonded patch is used. In addition, to describe the load transfer mechanism from the substrate to the composite patch, a simple shear lag model is introduced. The 3D stress behavior at the free edge of the composite patch is modeled by Lekhnitskii stress functions, and the governing equations of the given composite patch are obtained by applying the principle of complementary virtual work. After a suitable expansion of the functions, the governing equations are transformed into two coupled ordinary differential equations, and they are solved by a general eigenvalue solution procedure. As the number of base functions increases, the interlaminar stresses converge. The interlaminar stresses reach maximum at the free edge and decrease sharply at the inner part of the patch. The interlaminar stresses are concentrated at the interface between the layers because of the mismatch of material properties and the geometric singularity. Since the proposed method accurately predicts the 3D stresses in a composite patch bonded on the metal substrate, it can be used as a simple and efficient analytical tool for designing such structural components.
[Display omitted]
►A stress function-based analysis is applied for free-edge of bonded composite patch. ►A linear superposition of sliced section is used for 3D stress analysis. ►Interlaminar stresses reach maximum at the free edge. ►Interlaminar stresses decrease sharply at the inner part of the patch.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2010.08.006</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6172-9079</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7403 |
ispartof | International journal of mechanical sciences, 2010-12, Vol.52 (12), p.1646-1659 |
issn | 0020-7403 1879-2162 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02594302v1 |
source | ScienceDirect Journals |
subjects | Bonding Complementary virtual work Composite patch Environmental Sciences Exact sciences and technology Fracture mechanics (crack, fatigue, damage...) Free edge Fundamental areas of phenomenology (including applications) Interlaminar stress Mathematical analysis Mathematical models Physics Shear lag model Solid mechanics Static elasticity (thermoelasticity...) Stress analysis Stress function Stress functions Stresses Structural and continuum mechanics Three dimensional |
title | Three dimensional stress analysis of a composite patch using stress functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20dimensional%20stress%20analysis%20of%20a%20composite%20patch%20using%20stress%20functions&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Kim,%20Heung%20Soo&rft.date=2010-12-01&rft.volume=52&rft.issue=12&rft.spage=1646&rft.epage=1659&rft.pages=1646-1659&rft.issn=0020-7403&rft.eissn=1879-2162&rft.coden=IMSCAW&rft_id=info:doi/10.1016/j.ijmecsci.2010.08.006&rft_dat=%3Cproquest_hal_p%3E831190283%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-9bfe816571867d042aa1f8e20bbcb1d848395b15e8d3ea35ca06c45f943dceae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=831190283&rft_id=info:pmid/&rfr_iscdi=true |