Loading…

An optimisation-based approach to generate interpretable within-field zones

The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between...

Full description

Saved in:
Bibliographic Details
Published in:Precision agriculture 2019-02, Vol.20 (1), p.101-117
Main Authors: Loisel, Patrice, Charnomordic, Brigitte, Jones, Hazaël, Tisseyre, Bruno
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243
cites cdi_FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243
container_end_page 117
container_issue 1
container_start_page 101
container_title Precision agriculture
container_volume 20
creator Loisel, Patrice
Charnomordic, Brigitte
Jones, Hazaël
Tisseyre, Bruno
description The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between maps either with different zones or different labels, which is of importance for zone delineation algorithms aiming at maximizing inter-zone variability. In addition, this study also proposes an optimisation procedure that yields interpretable within-field zones in which each zone is assigned a clear label. The zoning procedure involves contour delineation based on quantile values. The key point of the paper is to use the proposed numerical zoning quality criterion to guide the optimisation procedure showing the complementarity of both proposals in delineating relevant within-field zones. In order to demonstrate the relevancy of the criterion, the zoning procedure and the implementation of both together, the method was tested on 50 theoretical fields with known variability and known spatial structure. A real plot with yield monitoring data was also used to demonstrate the value of the approach on a real case. Results show the relevancy of the methodology to compare maps with different zones and to sort them. Results also demonstrate the interest of the optimisation procedure to provide a ranked set of possible maps with different within-field zones. This set of relevant maps may constitute a decision support for practitioners who may consider additional expert information to choose the most appropriate map in the specific conditions under consideration.
doi_str_mv 10.1007/s11119-018-9584-3
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02608028v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046365953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSsEEmPwAbhV4sQhkD9N2h6nCRhiEhc4R27rbpm6piQZCD49qYrghC-2rN97sl-SXDJ6wyjNbz2LVRLKClLKIiPiKJkxmQvCFCuO4ywKSTiX6jQ5835HaVRlfJY8LfrUDsHsjYdgbE8q8NikMAzOQr1Ng0032KODgKnpA7rBYYCqw_TDhK3pSWuwa9Iv26M_T05a6Dxe_PR58np_97JckfXzw-NysSa1kDQQqApWlI2CJs-ZgFaVKCpFsRIlF2UDskUQNZctA5lnHIHLvC6ZqqGSsuGZmCfXk-8WOj04swf3qS0YvVqs9bijXNGC8uKdRfZqYuM_bwf0Qe_swfXxPM1ppoSSpRSRYhNVO-u9w_bXllE95qunfHXMV4_56lHDJ42PbL9B9-f8v-gbyOd9CQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046365953</pqid></control><display><type>article</type><title>An optimisation-based approach to generate interpretable within-field zones</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Loisel, Patrice ; Charnomordic, Brigitte ; Jones, Hazaël ; Tisseyre, Bruno</creator><creatorcontrib>Loisel, Patrice ; Charnomordic, Brigitte ; Jones, Hazaël ; Tisseyre, Bruno</creatorcontrib><description>The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between maps either with different zones or different labels, which is of importance for zone delineation algorithms aiming at maximizing inter-zone variability. In addition, this study also proposes an optimisation procedure that yields interpretable within-field zones in which each zone is assigned a clear label. The zoning procedure involves contour delineation based on quantile values. The key point of the paper is to use the proposed numerical zoning quality criterion to guide the optimisation procedure showing the complementarity of both proposals in delineating relevant within-field zones. In order to demonstrate the relevancy of the criterion, the zoning procedure and the implementation of both together, the method was tested on 50 theoretical fields with known variability and known spatial structure. A real plot with yield monitoring data was also used to demonstrate the value of the approach on a real case. Results show the relevancy of the methodology to compare maps with different zones and to sort them. Results also demonstrate the interest of the optimisation procedure to provide a ranked set of possible maps with different within-field zones. This set of relevant maps may constitute a decision support for practitioners who may consider additional expert information to choose the most appropriate map in the specific conditions under consideration.</description><identifier>ISSN: 1385-2256</identifier><identifier>EISSN: 1573-1618</identifier><identifier>DOI: 10.1007/s11119-018-9584-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Algorithms ; Atmospheric Sciences ; Biomedical and Life Sciences ; Chemistry and Earth Sciences ; Classification ; Complementarity ; Computer Science ; Criteria ; Decomposition ; Delineation ; Environmental Sciences ; Life Sciences ; Optimization ; Physics ; Remote Sensing/Photogrammetry ; Soil Science &amp; Conservation ; Statistics for Engineering ; Zoning</subject><ispartof>Precision agriculture, 2019-02, Vol.20 (1), p.101-117</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Precision Agriculture is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243</citedby><cites>FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243</cites><orcidid>0000-0001-5250-6204 ; 0000-0002-6066-9641 ; 0000-0002-1947-5503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2046365953/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2046365953?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02608028$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Loisel, Patrice</creatorcontrib><creatorcontrib>Charnomordic, Brigitte</creatorcontrib><creatorcontrib>Jones, Hazaël</creatorcontrib><creatorcontrib>Tisseyre, Bruno</creatorcontrib><title>An optimisation-based approach to generate interpretable within-field zones</title><title>Precision agriculture</title><addtitle>Precision Agric</addtitle><description>The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between maps either with different zones or different labels, which is of importance for zone delineation algorithms aiming at maximizing inter-zone variability. In addition, this study also proposes an optimisation procedure that yields interpretable within-field zones in which each zone is assigned a clear label. The zoning procedure involves contour delineation based on quantile values. The key point of the paper is to use the proposed numerical zoning quality criterion to guide the optimisation procedure showing the complementarity of both proposals in delineating relevant within-field zones. In order to demonstrate the relevancy of the criterion, the zoning procedure and the implementation of both together, the method was tested on 50 theoretical fields with known variability and known spatial structure. A real plot with yield monitoring data was also used to demonstrate the value of the approach on a real case. Results show the relevancy of the methodology to compare maps with different zones and to sort them. Results also demonstrate the interest of the optimisation procedure to provide a ranked set of possible maps with different within-field zones. This set of relevant maps may constitute a decision support for practitioners who may consider additional expert information to choose the most appropriate map in the specific conditions under consideration.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Chemistry and Earth Sciences</subject><subject>Classification</subject><subject>Complementarity</subject><subject>Computer Science</subject><subject>Criteria</subject><subject>Decomposition</subject><subject>Delineation</subject><subject>Environmental Sciences</subject><subject>Life Sciences</subject><subject>Optimization</subject><subject>Physics</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Soil Science &amp; Conservation</subject><subject>Statistics for Engineering</subject><subject>Zoning</subject><issn>1385-2256</issn><issn>1573-1618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9PwzAMxSsEEmPwAbhV4sQhkD9N2h6nCRhiEhc4R27rbpm6piQZCD49qYrghC-2rN97sl-SXDJ6wyjNbz2LVRLKClLKIiPiKJkxmQvCFCuO4ywKSTiX6jQ5835HaVRlfJY8LfrUDsHsjYdgbE8q8NikMAzOQr1Ng0032KODgKnpA7rBYYCqw_TDhK3pSWuwa9Iv26M_T05a6Dxe_PR58np_97JckfXzw-NysSa1kDQQqApWlI2CJs-ZgFaVKCpFsRIlF2UDskUQNZctA5lnHIHLvC6ZqqGSsuGZmCfXk-8WOj04swf3qS0YvVqs9bijXNGC8uKdRfZqYuM_bwf0Qe_swfXxPM1ppoSSpRSRYhNVO-u9w_bXllE95qunfHXMV4_56lHDJ42PbL9B9-f8v-gbyOd9CQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Loisel, Patrice</creator><creator>Charnomordic, Brigitte</creator><creator>Jones, Hazaël</creator><creator>Tisseyre, Bruno</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5250-6204</orcidid><orcidid>https://orcid.org/0000-0002-6066-9641</orcidid><orcidid>https://orcid.org/0000-0002-1947-5503</orcidid></search><sort><creationdate>20190201</creationdate><title>An optimisation-based approach to generate interpretable within-field zones</title><author>Loisel, Patrice ; Charnomordic, Brigitte ; Jones, Hazaël ; Tisseyre, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Chemistry and Earth Sciences</topic><topic>Classification</topic><topic>Complementarity</topic><topic>Computer Science</topic><topic>Criteria</topic><topic>Decomposition</topic><topic>Delineation</topic><topic>Environmental Sciences</topic><topic>Life Sciences</topic><topic>Optimization</topic><topic>Physics</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Soil Science &amp; Conservation</topic><topic>Statistics for Engineering</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loisel, Patrice</creatorcontrib><creatorcontrib>Charnomordic, Brigitte</creatorcontrib><creatorcontrib>Jones, Hazaël</creatorcontrib><creatorcontrib>Tisseyre, Bruno</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Precision agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loisel, Patrice</au><au>Charnomordic, Brigitte</au><au>Jones, Hazaël</au><au>Tisseyre, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimisation-based approach to generate interpretable within-field zones</atitle><jtitle>Precision agriculture</jtitle><stitle>Precision Agric</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>20</volume><issue>1</issue><spage>101</spage><epage>117</epage><pages>101-117</pages><issn>1385-2256</issn><eissn>1573-1618</eissn><abstract>The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between maps either with different zones or different labels, which is of importance for zone delineation algorithms aiming at maximizing inter-zone variability. In addition, this study also proposes an optimisation procedure that yields interpretable within-field zones in which each zone is assigned a clear label. The zoning procedure involves contour delineation based on quantile values. The key point of the paper is to use the proposed numerical zoning quality criterion to guide the optimisation procedure showing the complementarity of both proposals in delineating relevant within-field zones. In order to demonstrate the relevancy of the criterion, the zoning procedure and the implementation of both together, the method was tested on 50 theoretical fields with known variability and known spatial structure. A real plot with yield monitoring data was also used to demonstrate the value of the approach on a real case. Results show the relevancy of the methodology to compare maps with different zones and to sort them. Results also demonstrate the interest of the optimisation procedure to provide a ranked set of possible maps with different within-field zones. This set of relevant maps may constitute a decision support for practitioners who may consider additional expert information to choose the most appropriate map in the specific conditions under consideration.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11119-018-9584-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5250-6204</orcidid><orcidid>https://orcid.org/0000-0002-6066-9641</orcidid><orcidid>https://orcid.org/0000-0002-1947-5503</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-2256
ispartof Precision agriculture, 2019-02, Vol.20 (1), p.101-117
issn 1385-2256
1573-1618
language eng
recordid cdi_hal_primary_oai_HAL_hal_02608028v1
source ABI/INFORM Global; Springer Link
subjects Agriculture
Algorithms
Atmospheric Sciences
Biomedical and Life Sciences
Chemistry and Earth Sciences
Classification
Complementarity
Computer Science
Criteria
Decomposition
Delineation
Environmental Sciences
Life Sciences
Optimization
Physics
Remote Sensing/Photogrammetry
Soil Science & Conservation
Statistics for Engineering
Zoning
title An optimisation-based approach to generate interpretable within-field zones
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimisation-based%20approach%20to%20generate%20interpretable%20within-field%20zones&rft.jtitle=Precision%20agriculture&rft.au=Loisel,%20Patrice&rft.date=2019-02-01&rft.volume=20&rft.issue=1&rft.spage=101&rft.epage=117&rft.pages=101-117&rft.issn=1385-2256&rft.eissn=1573-1618&rft_id=info:doi/10.1007/s11119-018-9584-3&rft_dat=%3Cproquest_hal_p%3E2046365953%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2046365953&rft_id=info:pmid/&rfr_iscdi=true