Loading…
An optimisation-based approach to generate interpretable within-field zones
The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between...
Saved in:
Published in: | Precision agriculture 2019-02, Vol.20 (1), p.101-117 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243 |
container_end_page | 117 |
container_issue | 1 |
container_start_page | 101 |
container_title | Precision agriculture |
container_volume | 20 |
creator | Loisel, Patrice Charnomordic, Brigitte Jones, Hazaël Tisseyre, Bruno |
description | The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between maps either with different zones or different labels, which is of importance for zone delineation algorithms aiming at maximizing inter-zone variability. In addition, this study also proposes an optimisation procedure that yields interpretable within-field zones in which each zone is assigned a clear label. The zoning procedure involves contour delineation based on quantile values. The key point of the paper is to use the proposed numerical zoning quality criterion to guide the optimisation procedure showing the complementarity of both proposals in delineating relevant within-field zones. In order to demonstrate the relevancy of the criterion, the zoning procedure and the implementation of both together, the method was tested on 50 theoretical fields with known variability and known spatial structure. A real plot with yield monitoring data was also used to demonstrate the value of the approach on a real case. Results show the relevancy of the methodology to compare maps with different zones and to sort them. Results also demonstrate the interest of the optimisation procedure to provide a ranked set of possible maps with different within-field zones. This set of relevant maps may constitute a decision support for practitioners who may consider additional expert information to choose the most appropriate map in the specific conditions under consideration. |
doi_str_mv | 10.1007/s11119-018-9584-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02608028v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046365953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSsEEmPwAbhV4sQhkD9N2h6nCRhiEhc4R27rbpm6piQZCD49qYrghC-2rN97sl-SXDJ6wyjNbz2LVRLKClLKIiPiKJkxmQvCFCuO4ywKSTiX6jQ5835HaVRlfJY8LfrUDsHsjYdgbE8q8NikMAzOQr1Ng0032KODgKnpA7rBYYCqw_TDhK3pSWuwa9Iv26M_T05a6Dxe_PR58np_97JckfXzw-NysSa1kDQQqApWlI2CJs-ZgFaVKCpFsRIlF2UDskUQNZctA5lnHIHLvC6ZqqGSsuGZmCfXk-8WOj04swf3qS0YvVqs9bijXNGC8uKdRfZqYuM_bwf0Qe_swfXxPM1ppoSSpRSRYhNVO-u9w_bXllE95qunfHXMV4_56lHDJ42PbL9B9-f8v-gbyOd9CQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046365953</pqid></control><display><type>article</type><title>An optimisation-based approach to generate interpretable within-field zones</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Loisel, Patrice ; Charnomordic, Brigitte ; Jones, Hazaël ; Tisseyre, Bruno</creator><creatorcontrib>Loisel, Patrice ; Charnomordic, Brigitte ; Jones, Hazaël ; Tisseyre, Bruno</creatorcontrib><description>The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between maps either with different zones or different labels, which is of importance for zone delineation algorithms aiming at maximizing inter-zone variability. In addition, this study also proposes an optimisation procedure that yields interpretable within-field zones in which each zone is assigned a clear label. The zoning procedure involves contour delineation based on quantile values. The key point of the paper is to use the proposed numerical zoning quality criterion to guide the optimisation procedure showing the complementarity of both proposals in delineating relevant within-field zones. In order to demonstrate the relevancy of the criterion, the zoning procedure and the implementation of both together, the method was tested on 50 theoretical fields with known variability and known spatial structure. A real plot with yield monitoring data was also used to demonstrate the value of the approach on a real case. Results show the relevancy of the methodology to compare maps with different zones and to sort them. Results also demonstrate the interest of the optimisation procedure to provide a ranked set of possible maps with different within-field zones. This set of relevant maps may constitute a decision support for practitioners who may consider additional expert information to choose the most appropriate map in the specific conditions under consideration.</description><identifier>ISSN: 1385-2256</identifier><identifier>EISSN: 1573-1618</identifier><identifier>DOI: 10.1007/s11119-018-9584-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Algorithms ; Atmospheric Sciences ; Biomedical and Life Sciences ; Chemistry and Earth Sciences ; Classification ; Complementarity ; Computer Science ; Criteria ; Decomposition ; Delineation ; Environmental Sciences ; Life Sciences ; Optimization ; Physics ; Remote Sensing/Photogrammetry ; Soil Science & Conservation ; Statistics for Engineering ; Zoning</subject><ispartof>Precision agriculture, 2019-02, Vol.20 (1), p.101-117</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Precision Agriculture is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243</citedby><cites>FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243</cites><orcidid>0000-0001-5250-6204 ; 0000-0002-6066-9641 ; 0000-0002-1947-5503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2046365953/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2046365953?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02608028$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Loisel, Patrice</creatorcontrib><creatorcontrib>Charnomordic, Brigitte</creatorcontrib><creatorcontrib>Jones, Hazaël</creatorcontrib><creatorcontrib>Tisseyre, Bruno</creatorcontrib><title>An optimisation-based approach to generate interpretable within-field zones</title><title>Precision agriculture</title><addtitle>Precision Agric</addtitle><description>The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between maps either with different zones or different labels, which is of importance for zone delineation algorithms aiming at maximizing inter-zone variability. In addition, this study also proposes an optimisation procedure that yields interpretable within-field zones in which each zone is assigned a clear label. The zoning procedure involves contour delineation based on quantile values. The key point of the paper is to use the proposed numerical zoning quality criterion to guide the optimisation procedure showing the complementarity of both proposals in delineating relevant within-field zones. In order to demonstrate the relevancy of the criterion, the zoning procedure and the implementation of both together, the method was tested on 50 theoretical fields with known variability and known spatial structure. A real plot with yield monitoring data was also used to demonstrate the value of the approach on a real case. Results show the relevancy of the methodology to compare maps with different zones and to sort them. Results also demonstrate the interest of the optimisation procedure to provide a ranked set of possible maps with different within-field zones. This set of relevant maps may constitute a decision support for practitioners who may consider additional expert information to choose the most appropriate map in the specific conditions under consideration.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Chemistry and Earth Sciences</subject><subject>Classification</subject><subject>Complementarity</subject><subject>Computer Science</subject><subject>Criteria</subject><subject>Decomposition</subject><subject>Delineation</subject><subject>Environmental Sciences</subject><subject>Life Sciences</subject><subject>Optimization</subject><subject>Physics</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Soil Science & Conservation</subject><subject>Statistics for Engineering</subject><subject>Zoning</subject><issn>1385-2256</issn><issn>1573-1618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE9PwzAMxSsEEmPwAbhV4sQhkD9N2h6nCRhiEhc4R27rbpm6piQZCD49qYrghC-2rN97sl-SXDJ6wyjNbz2LVRLKClLKIiPiKJkxmQvCFCuO4ywKSTiX6jQ5835HaVRlfJY8LfrUDsHsjYdgbE8q8NikMAzOQr1Ng0032KODgKnpA7rBYYCqw_TDhK3pSWuwa9Iv26M_T05a6Dxe_PR58np_97JckfXzw-NysSa1kDQQqApWlI2CJs-ZgFaVKCpFsRIlF2UDskUQNZctA5lnHIHLvC6ZqqGSsuGZmCfXk-8WOj04swf3qS0YvVqs9bijXNGC8uKdRfZqYuM_bwf0Qe_swfXxPM1ppoSSpRSRYhNVO-u9w_bXllE95qunfHXMV4_56lHDJ42PbL9B9-f8v-gbyOd9CQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Loisel, Patrice</creator><creator>Charnomordic, Brigitte</creator><creator>Jones, Hazaël</creator><creator>Tisseyre, Bruno</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5250-6204</orcidid><orcidid>https://orcid.org/0000-0002-6066-9641</orcidid><orcidid>https://orcid.org/0000-0002-1947-5503</orcidid></search><sort><creationdate>20190201</creationdate><title>An optimisation-based approach to generate interpretable within-field zones</title><author>Loisel, Patrice ; Charnomordic, Brigitte ; Jones, Hazaël ; Tisseyre, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Chemistry and Earth Sciences</topic><topic>Classification</topic><topic>Complementarity</topic><topic>Computer Science</topic><topic>Criteria</topic><topic>Decomposition</topic><topic>Delineation</topic><topic>Environmental Sciences</topic><topic>Life Sciences</topic><topic>Optimization</topic><topic>Physics</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Soil Science & Conservation</topic><topic>Statistics for Engineering</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loisel, Patrice</creatorcontrib><creatorcontrib>Charnomordic, Brigitte</creatorcontrib><creatorcontrib>Jones, Hazaël</creatorcontrib><creatorcontrib>Tisseyre, Bruno</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Precision agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loisel, Patrice</au><au>Charnomordic, Brigitte</au><au>Jones, Hazaël</au><au>Tisseyre, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimisation-based approach to generate interpretable within-field zones</atitle><jtitle>Precision agriculture</jtitle><stitle>Precision Agric</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>20</volume><issue>1</issue><spage>101</spage><epage>117</epage><pages>101-117</pages><issn>1385-2256</issn><eissn>1573-1618</eissn><abstract>The paper proposes a numerical criterion to evaluate zoning quality for a given number of classes. The originality of the criterion is to simultaneously quantify how zones are heterogeneous on the whole field under study and how neighbouring zones are similar. This approach allows comparison between maps either with different zones or different labels, which is of importance for zone delineation algorithms aiming at maximizing inter-zone variability. In addition, this study also proposes an optimisation procedure that yields interpretable within-field zones in which each zone is assigned a clear label. The zoning procedure involves contour delineation based on quantile values. The key point of the paper is to use the proposed numerical zoning quality criterion to guide the optimisation procedure showing the complementarity of both proposals in delineating relevant within-field zones. In order to demonstrate the relevancy of the criterion, the zoning procedure and the implementation of both together, the method was tested on 50 theoretical fields with known variability and known spatial structure. A real plot with yield monitoring data was also used to demonstrate the value of the approach on a real case. Results show the relevancy of the methodology to compare maps with different zones and to sort them. Results also demonstrate the interest of the optimisation procedure to provide a ranked set of possible maps with different within-field zones. This set of relevant maps may constitute a decision support for practitioners who may consider additional expert information to choose the most appropriate map in the specific conditions under consideration.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11119-018-9584-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5250-6204</orcidid><orcidid>https://orcid.org/0000-0002-6066-9641</orcidid><orcidid>https://orcid.org/0000-0002-1947-5503</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-2256 |
ispartof | Precision agriculture, 2019-02, Vol.20 (1), p.101-117 |
issn | 1385-2256 1573-1618 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02608028v1 |
source | ABI/INFORM Global; Springer Link |
subjects | Agriculture Algorithms Atmospheric Sciences Biomedical and Life Sciences Chemistry and Earth Sciences Classification Complementarity Computer Science Criteria Decomposition Delineation Environmental Sciences Life Sciences Optimization Physics Remote Sensing/Photogrammetry Soil Science & Conservation Statistics for Engineering Zoning |
title | An optimisation-based approach to generate interpretable within-field zones |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimisation-based%20approach%20to%20generate%20interpretable%20within-field%20zones&rft.jtitle=Precision%20agriculture&rft.au=Loisel,%20Patrice&rft.date=2019-02-01&rft.volume=20&rft.issue=1&rft.spage=101&rft.epage=117&rft.pages=101-117&rft.issn=1385-2256&rft.eissn=1573-1618&rft_id=info:doi/10.1007/s11119-018-9584-3&rft_dat=%3Cproquest_hal_p%3E2046365953%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-ab8189d6ad7713af69e3b60eb39239da5fea3c25f1a5742ea257c916cab55d243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2046365953&rft_id=info:pmid/&rfr_iscdi=true |