Loading…
Osteology and Functional Morphology of the Axial Postcranium of the Marine Sloth Thalassocnus (Mammalia, Tardigrada) with Paleobiological Implications
The gross morphology of the axial postcranium of Thalassocnus is presented here, completing the description of the skeleton of the genus. Thalassocnus is characterized by a low spinous process on C7, a cranially shifted position of the diaphragmatic vertebra, a great number of caudal vertebrae, the...
Saved in:
Published in: | Journal of mammalian evolution 2015-12, Vol.22 (4), p.473-518 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The gross morphology of the axial postcranium of
Thalassocnus
is presented here, completing the description of the skeleton of the genus.
Thalassocnus
is characterized by a low spinous process on C7, a cranially shifted position of the diaphragmatic vertebra, a great number of caudal vertebrae, the morphology of their transverse processes, and the conservation of the craniocaudal length of their centra up to Ca19. Additionally, the late species of
Thalassocnus
feature cranial articular surfaces of the atlas that are oriented cranioventrally and thoracolumbar vertebrae with spinous processes that are more inclined caudally, shorter craniocaudally, and have a smaller apex than in earlier species. In the late species, the thoracolumbar vertebrae are also characterized by zygapophyseal articulations that are more conspicuously concavo-convex, and by ribs that are affected by osteosclerosis and pachyostosis.
Thalassocnus yaucensis
additionally differs from the earlier species of the genus in featuring thoracolumbar vertebral centra that are shortened craniocaudally. The morphology of the axial postcranium of
Thalassocnus
is consistent with a reduced amount of time spent in a terrestrial habitat. Furthermore, the overall body size and extensive and extreme osteosclerosis of
Thalassocnus
suggest that bottom-walking was part of its modes of swimming. The tail was probably involved in diving and equilibration but did not contribute to propulsion. A downturned position of the head is inferred for the late species of
Thalassocnus
, and is probably related to grazing activity on the seafloor. The stabilized vertebral column may be related to the digging behavior purported in
Thalassocnus
. The aquatic functions of the entire skeleton of
Thalassocnus
are reviewed. |
---|---|
ISSN: | 1064-7554 1573-7055 |
DOI: | 10.1007/s10914-014-9280-7 |