Loading…

The zoospores of the thraustochytrid Aurantiochytrium limacinum: Transcriptional reprogramming and lipid metabolism associated to their specific functions

Summary Aurantiochytrium limacinum (Thraustochytriaceae, class Labyrinthulomycetes) is a marine Stramenopile and a pioneering mangrove decomposer. Its life cycle involves a non‐motile stage and zoospore production. We observed that the composition of the medium, the presence of amino acids in partic...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2020-05, Vol.22 (5), p.1901-1916
Main Authors: Dellero, Younès, Maës, Cécile, Morabito, Christian, Schuler, Martin, Bournaud, Caroline, Aiese Cigliano, Riccardo, Maréchal, Eric, Amato, Alberto, Rébeillé, Fabrice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4468-4513c0edc2b06f68c4f1535749484b6c301c65c5636f0bcf63100f65bdcd8a403
cites cdi_FETCH-LOGICAL-c4468-4513c0edc2b06f68c4f1535749484b6c301c65c5636f0bcf63100f65bdcd8a403
container_end_page 1916
container_issue 5
container_start_page 1901
container_title Environmental microbiology
container_volume 22
creator Dellero, Younès
Maës, Cécile
Morabito, Christian
Schuler, Martin
Bournaud, Caroline
Aiese Cigliano, Riccardo
Maréchal, Eric
Amato, Alberto
Rébeillé, Fabrice
description Summary Aurantiochytrium limacinum (Thraustochytriaceae, class Labyrinthulomycetes) is a marine Stramenopile and a pioneering mangrove decomposer. Its life cycle involves a non‐motile stage and zoospore production. We observed that the composition of the medium, the presence of amino acids in particular, affects the release of zoospores. Two opposite conditions were defined, one with a cell population mainly composed of zoospores and another one with almost only non‐motile cells. In silico allelic frequency analysis and flow cytometry suggest that zoospores and non‐motile cells share the same ploidy level and are diploid. Through an RNA‐seq approach, the transcriptional reprogramming accompanying the formation of zoospores was investigated, with a particular focus on their lipid metabolism. Based on a differential expression analysis, zoospores are characterized by high motility, very active signal transduction, an arrest of the cell division, a low amino acid metabolism and low glycolysis. Focusing on lipid metabolism, genes involved in lipase activities and peroxisomal β‐oxidation are upregulated. qRT‐PCR of selected lipid genes and lipid analyses during the life span of zoospores confirmed these observations. These results highlight the importance of the lipid dynamics in zoospores and show the metabolic processes required to use these energy‐dense molecules as fuel for zoospore survival during their quest of new territories.
doi_str_mv 10.1111/1462-2920.14978
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02613868v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397460658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4468-4513c0edc2b06f68c4f1535749484b6c301c65c5636f0bcf63100f65bdcd8a403</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqVw5oYscSmHbe34Iwm3VVVopUVclrPlOHbXVRwHf4C2P6W_tk6z7IFLfbFn5pnXHr8AfMToApd1iSmvVlVblZC2dfMKnB4zr49nXJ2AdzHeI4RrUqO34IRUmNZNzU7B43an4YP3cfJBR-gNTCWRdkHmmLza7VOwPVznIMdkD3F2cLBOKjtm9xVuSymqYKdSH-UAg56CvwvSOTveQTn2BZ6KhtNJdn6w0UEZo1dWJt3D5OcLbYBx0soaq6DJo5ql4nvwxsgh6g-H_Qz8-na9vbpZbX5-v71ab1aKUt6sKMNEId2rqkPc8EZRgxlhNW1pQzuuCMKKM8U44QZ1ynCCETKcdb3qG0kROQNfFt2dHMQUymRhL7y04ma9EXMOVRyThjd_cGHPF7bM-DvrmISzUelhkKP2OYqK1IyhljzLfv4Pvfc5lB-aqbamHHHWFOpyoVTwMQZtji_ASMwWi9lEMRsqni0uHZ8Ourlzuj_y_zwtAFuAv3bQ-5f0xPWP20X4CXjksvY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397460658</pqid></control><display><type>article</type><title>The zoospores of the thraustochytrid Aurantiochytrium limacinum: Transcriptional reprogramming and lipid metabolism associated to their specific functions</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Dellero, Younès ; Maës, Cécile ; Morabito, Christian ; Schuler, Martin ; Bournaud, Caroline ; Aiese Cigliano, Riccardo ; Maréchal, Eric ; Amato, Alberto ; Rébeillé, Fabrice</creator><creatorcontrib>Dellero, Younès ; Maës, Cécile ; Morabito, Christian ; Schuler, Martin ; Bournaud, Caroline ; Aiese Cigliano, Riccardo ; Maréchal, Eric ; Amato, Alberto ; Rébeillé, Fabrice</creatorcontrib><description>Summary Aurantiochytrium limacinum (Thraustochytriaceae, class Labyrinthulomycetes) is a marine Stramenopile and a pioneering mangrove decomposer. Its life cycle involves a non‐motile stage and zoospore production. We observed that the composition of the medium, the presence of amino acids in particular, affects the release of zoospores. Two opposite conditions were defined, one with a cell population mainly composed of zoospores and another one with almost only non‐motile cells. In silico allelic frequency analysis and flow cytometry suggest that zoospores and non‐motile cells share the same ploidy level and are diploid. Through an RNA‐seq approach, the transcriptional reprogramming accompanying the formation of zoospores was investigated, with a particular focus on their lipid metabolism. Based on a differential expression analysis, zoospores are characterized by high motility, very active signal transduction, an arrest of the cell division, a low amino acid metabolism and low glycolysis. Focusing on lipid metabolism, genes involved in lipase activities and peroxisomal β‐oxidation are upregulated. qRT‐PCR of selected lipid genes and lipid analyses during the life span of zoospores confirmed these observations. These results highlight the importance of the lipid dynamics in zoospores and show the metabolic processes required to use these energy‐dense molecules as fuel for zoospore survival during their quest of new territories.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14978</identifier><identifier>PMID: 32147875</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Amino acids ; Amino Acids - metabolism ; Animals ; Biochemistry, Molecular Biology ; Cell division ; Cell Division - genetics ; Cells ; Computer Simulation ; Culture Media - metabolism ; Decomposers ; Diploids ; Diploidy ; DNA ; Flow cytometry ; Frequency analysis ; Genes ; Glycolysis ; Glycolysis - genetics ; Life cycle ; Life Cycle Stages ; Life cycles ; Life Sciences ; Life span ; Lipase ; Lipid metabolism ; Lipid Metabolism - genetics ; Lipid Metabolism - physiology ; Lipids ; Lipids - analysis ; Mangroves ; Metabolism ; Nucleic acids ; Nucleotide sequence ; Oxidation ; PCR ; Ploidy ; Ribonucleic acid ; RNA ; Signal transduction ; Signal Transduction - genetics ; Spores - growth &amp; development ; Stramenopiles - genetics ; Stramenopiles - metabolism ; Survival ; Transcription ; Transcription, Genetic - genetics ; Zoospores</subject><ispartof>Environmental microbiology, 2020-05, Vol.22 (5), p.1901-1916</ispartof><rights>2020 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2020 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4468-4513c0edc2b06f68c4f1535749484b6c301c65c5636f0bcf63100f65bdcd8a403</citedby><cites>FETCH-LOGICAL-c4468-4513c0edc2b06f68c4f1535749484b6c301c65c5636f0bcf63100f65bdcd8a403</cites><orcidid>0000-0002-3193-7299 ; 0000-0002-9126-5535 ; 0000-0002-0060-1696 ; 0000-0001-6038-8199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32147875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02613868$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dellero, Younès</creatorcontrib><creatorcontrib>Maës, Cécile</creatorcontrib><creatorcontrib>Morabito, Christian</creatorcontrib><creatorcontrib>Schuler, Martin</creatorcontrib><creatorcontrib>Bournaud, Caroline</creatorcontrib><creatorcontrib>Aiese Cigliano, Riccardo</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><creatorcontrib>Amato, Alberto</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><title>The zoospores of the thraustochytrid Aurantiochytrium limacinum: Transcriptional reprogramming and lipid metabolism associated to their specific functions</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Aurantiochytrium limacinum (Thraustochytriaceae, class Labyrinthulomycetes) is a marine Stramenopile and a pioneering mangrove decomposer. Its life cycle involves a non‐motile stage and zoospore production. We observed that the composition of the medium, the presence of amino acids in particular, affects the release of zoospores. Two opposite conditions were defined, one with a cell population mainly composed of zoospores and another one with almost only non‐motile cells. In silico allelic frequency analysis and flow cytometry suggest that zoospores and non‐motile cells share the same ploidy level and are diploid. Through an RNA‐seq approach, the transcriptional reprogramming accompanying the formation of zoospores was investigated, with a particular focus on their lipid metabolism. Based on a differential expression analysis, zoospores are characterized by high motility, very active signal transduction, an arrest of the cell division, a low amino acid metabolism and low glycolysis. Focusing on lipid metabolism, genes involved in lipase activities and peroxisomal β‐oxidation are upregulated. qRT‐PCR of selected lipid genes and lipid analyses during the life span of zoospores confirmed these observations. These results highlight the importance of the lipid dynamics in zoospores and show the metabolic processes required to use these energy‐dense molecules as fuel for zoospore survival during their quest of new territories.</description><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell division</subject><subject>Cell Division - genetics</subject><subject>Cells</subject><subject>Computer Simulation</subject><subject>Culture Media - metabolism</subject><subject>Decomposers</subject><subject>Diploids</subject><subject>Diploidy</subject><subject>DNA</subject><subject>Flow cytometry</subject><subject>Frequency analysis</subject><subject>Genes</subject><subject>Glycolysis</subject><subject>Glycolysis - genetics</subject><subject>Life cycle</subject><subject>Life Cycle Stages</subject><subject>Life cycles</subject><subject>Life Sciences</subject><subject>Life span</subject><subject>Lipase</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipid Metabolism - physiology</subject><subject>Lipids</subject><subject>Lipids - analysis</subject><subject>Mangroves</subject><subject>Metabolism</subject><subject>Nucleic acids</subject><subject>Nucleotide sequence</subject><subject>Oxidation</subject><subject>PCR</subject><subject>Ploidy</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Spores - growth &amp; development</subject><subject>Stramenopiles - genetics</subject><subject>Stramenopiles - metabolism</subject><subject>Survival</subject><subject>Transcription</subject><subject>Transcription, Genetic - genetics</subject><subject>Zoospores</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EoqVw5oYscSmHbe34Iwm3VVVopUVclrPlOHbXVRwHf4C2P6W_tk6z7IFLfbFn5pnXHr8AfMToApd1iSmvVlVblZC2dfMKnB4zr49nXJ2AdzHeI4RrUqO34IRUmNZNzU7B43an4YP3cfJBR-gNTCWRdkHmmLza7VOwPVznIMdkD3F2cLBOKjtm9xVuSymqYKdSH-UAg56CvwvSOTveQTn2BZ6KhtNJdn6w0UEZo1dWJt3D5OcLbYBx0soaq6DJo5ql4nvwxsgh6g-H_Qz8-na9vbpZbX5-v71ab1aKUt6sKMNEId2rqkPc8EZRgxlhNW1pQzuuCMKKM8U44QZ1ynCCETKcdb3qG0kROQNfFt2dHMQUymRhL7y04ma9EXMOVRyThjd_cGHPF7bM-DvrmISzUelhkKP2OYqK1IyhljzLfv4Pvfc5lB-aqbamHHHWFOpyoVTwMQZtji_ASMwWi9lEMRsqni0uHZ8Ourlzuj_y_zwtAFuAv3bQ-5f0xPWP20X4CXjksvY</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Dellero, Younès</creator><creator>Maës, Cécile</creator><creator>Morabito, Christian</creator><creator>Schuler, Martin</creator><creator>Bournaud, Caroline</creator><creator>Aiese Cigliano, Riccardo</creator><creator>Maréchal, Eric</creator><creator>Amato, Alberto</creator><creator>Rébeillé, Fabrice</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Society for Applied Microbiology and Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3193-7299</orcidid><orcidid>https://orcid.org/0000-0002-9126-5535</orcidid><orcidid>https://orcid.org/0000-0002-0060-1696</orcidid><orcidid>https://orcid.org/0000-0001-6038-8199</orcidid></search><sort><creationdate>202005</creationdate><title>The zoospores of the thraustochytrid Aurantiochytrium limacinum: Transcriptional reprogramming and lipid metabolism associated to their specific functions</title><author>Dellero, Younès ; Maës, Cécile ; Morabito, Christian ; Schuler, Martin ; Bournaud, Caroline ; Aiese Cigliano, Riccardo ; Maréchal, Eric ; Amato, Alberto ; Rébeillé, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4468-4513c0edc2b06f68c4f1535749484b6c301c65c5636f0bcf63100f65bdcd8a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell division</topic><topic>Cell Division - genetics</topic><topic>Cells</topic><topic>Computer Simulation</topic><topic>Culture Media - metabolism</topic><topic>Decomposers</topic><topic>Diploids</topic><topic>Diploidy</topic><topic>DNA</topic><topic>Flow cytometry</topic><topic>Frequency analysis</topic><topic>Genes</topic><topic>Glycolysis</topic><topic>Glycolysis - genetics</topic><topic>Life cycle</topic><topic>Life Cycle Stages</topic><topic>Life cycles</topic><topic>Life Sciences</topic><topic>Life span</topic><topic>Lipase</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipid Metabolism - physiology</topic><topic>Lipids</topic><topic>Lipids - analysis</topic><topic>Mangroves</topic><topic>Metabolism</topic><topic>Nucleic acids</topic><topic>Nucleotide sequence</topic><topic>Oxidation</topic><topic>PCR</topic><topic>Ploidy</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Spores - growth &amp; development</topic><topic>Stramenopiles - genetics</topic><topic>Stramenopiles - metabolism</topic><topic>Survival</topic><topic>Transcription</topic><topic>Transcription, Genetic - genetics</topic><topic>Zoospores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dellero, Younès</creatorcontrib><creatorcontrib>Maës, Cécile</creatorcontrib><creatorcontrib>Morabito, Christian</creatorcontrib><creatorcontrib>Schuler, Martin</creatorcontrib><creatorcontrib>Bournaud, Caroline</creatorcontrib><creatorcontrib>Aiese Cigliano, Riccardo</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><creatorcontrib>Amato, Alberto</creatorcontrib><creatorcontrib>Rébeillé, Fabrice</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dellero, Younès</au><au>Maës, Cécile</au><au>Morabito, Christian</au><au>Schuler, Martin</au><au>Bournaud, Caroline</au><au>Aiese Cigliano, Riccardo</au><au>Maréchal, Eric</au><au>Amato, Alberto</au><au>Rébeillé, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The zoospores of the thraustochytrid Aurantiochytrium limacinum: Transcriptional reprogramming and lipid metabolism associated to their specific functions</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>22</volume><issue>5</issue><spage>1901</spage><epage>1916</epage><pages>1901-1916</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Aurantiochytrium limacinum (Thraustochytriaceae, class Labyrinthulomycetes) is a marine Stramenopile and a pioneering mangrove decomposer. Its life cycle involves a non‐motile stage and zoospore production. We observed that the composition of the medium, the presence of amino acids in particular, affects the release of zoospores. Two opposite conditions were defined, one with a cell population mainly composed of zoospores and another one with almost only non‐motile cells. In silico allelic frequency analysis and flow cytometry suggest that zoospores and non‐motile cells share the same ploidy level and are diploid. Through an RNA‐seq approach, the transcriptional reprogramming accompanying the formation of zoospores was investigated, with a particular focus on their lipid metabolism. Based on a differential expression analysis, zoospores are characterized by high motility, very active signal transduction, an arrest of the cell division, a low amino acid metabolism and low glycolysis. Focusing on lipid metabolism, genes involved in lipase activities and peroxisomal β‐oxidation are upregulated. qRT‐PCR of selected lipid genes and lipid analyses during the life span of zoospores confirmed these observations. These results highlight the importance of the lipid dynamics in zoospores and show the metabolic processes required to use these energy‐dense molecules as fuel for zoospore survival during their quest of new territories.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32147875</pmid><doi>10.1111/1462-2920.14978</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3193-7299</orcidid><orcidid>https://orcid.org/0000-0002-9126-5535</orcidid><orcidid>https://orcid.org/0000-0002-0060-1696</orcidid><orcidid>https://orcid.org/0000-0001-6038-8199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2020-05, Vol.22 (5), p.1901-1916
issn 1462-2912
1462-2920
language eng
recordid cdi_hal_primary_oai_HAL_hal_02613868v1
source Wiley-Blackwell Read & Publish Collection
subjects Amino acids
Amino Acids - metabolism
Animals
Biochemistry, Molecular Biology
Cell division
Cell Division - genetics
Cells
Computer Simulation
Culture Media - metabolism
Decomposers
Diploids
Diploidy
DNA
Flow cytometry
Frequency analysis
Genes
Glycolysis
Glycolysis - genetics
Life cycle
Life Cycle Stages
Life cycles
Life Sciences
Life span
Lipase
Lipid metabolism
Lipid Metabolism - genetics
Lipid Metabolism - physiology
Lipids
Lipids - analysis
Mangroves
Metabolism
Nucleic acids
Nucleotide sequence
Oxidation
PCR
Ploidy
Ribonucleic acid
RNA
Signal transduction
Signal Transduction - genetics
Spores - growth & development
Stramenopiles - genetics
Stramenopiles - metabolism
Survival
Transcription
Transcription, Genetic - genetics
Zoospores
title The zoospores of the thraustochytrid Aurantiochytrium limacinum: Transcriptional reprogramming and lipid metabolism associated to their specific functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20zoospores%20of%20the%20thraustochytrid%20Aurantiochytrium%20limacinum:%20Transcriptional%20reprogramming%20and%20lipid%20metabolism%20associated%20to%20their%20specific%20functions&rft.jtitle=Environmental%20microbiology&rft.au=Dellero,%20Youn%C3%A8s&rft.date=2020-05&rft.volume=22&rft.issue=5&rft.spage=1901&rft.epage=1916&rft.pages=1901-1916&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14978&rft_dat=%3Cproquest_hal_p%3E2397460658%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4468-4513c0edc2b06f68c4f1535749484b6c301c65c5636f0bcf63100f65bdcd8a403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2397460658&rft_id=info:pmid/32147875&rfr_iscdi=true