Loading…
grape aquaporin VvSIP1 transports water across the ER membrane
Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1...
Saved in:
Published in: | Journal of experimental botany 2014-03, Vol.65 (4), p.981-993 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923 |
---|---|
cites | cdi_FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923 |
container_end_page | 993 |
container_issue | 4 |
container_start_page | 981 |
container_title | Journal of experimental botany |
container_volume | 65 |
creator | Noronha, Henrique Agasse, Alice Martins, Ana Paula Berny, Marie C Gomes, Dulceneia Zarrouk, Olfa Thiebaud, Pierre Delrot, Serge Soveral, Graça Chaumont, François Gerós, Hernâni |
description | Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast exhibited higher water permeability and lower activation energy for water transport than control vesicles, indicating the involvement of protein-mediated water diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, glucose, or inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to homogeneity from yeast ER membranes and the reconstitution of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel activity. To provide further insights into gene function, the expression of VvSIP1 in mature grapes was studied when vines were cultivated in different field conditions, but its transcript levels did not increase significantly in water-stressed plants and western-exposed berries. However, the expression of the aquaporin genes VvSIP1, VvPIP2;2, and VvTIP1;1 was up-regulated by heat in cultured cells. |
doi_str_mv | 10.1093/jxb/ert448 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02636655v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24043520</jstor_id><sourcerecordid>24043520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923</originalsourceid><addsrcrecordid>eNqNkcFLwzAUxoMoOqcX72qPKtS9JH1pcxHGmE4YKE69hrRNtaO1W9JN_e-NVsWj7xJ43--9fLyPkAMK5xQkH8zf0oGxbRQlG6RHIwEhizjdJD0AxkKQGO-QXefmAICAuE12vB4LhqJHLp6sXphAL1d60djyJXhcz65vadBa_eJ8p3XBq26NDXRmG-eC9tkE47ugNnXqCbNHtgpdObP__fbJw-X4fjQJpzdX16PhNMyQYxsyxmTKRCyi3JdJ81xSyQw3PONFgjxHHtNMABNCFoymOuZMSp5pLDD3JO-T027vs67Uwpa1tu-q0aWaDKfqs-dHuRCIa-rZk45d2Ga5Mq5VdekyU1Xeb7NyiqLw_6Dn_4ECx4hJlnj0rEO_7mBN8WuDgvqMQfkYVBeDh4--967S2uS_6M_dPXDYAXPXNvaPDhFHBl4_7vRCN0o_2dKphxkD7weAxgkg_wC00ZOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503542928</pqid></control><display><type>article</type><title>grape aquaporin VvSIP1 transports water across the ER membrane</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Noronha, Henrique ; Agasse, Alice ; Martins, Ana Paula ; Berny, Marie C ; Gomes, Dulceneia ; Zarrouk, Olfa ; Thiebaud, Pierre ; Delrot, Serge ; Soveral, Graça ; Chaumont, François ; Gerós, Hernâni</creator><creatorcontrib>Noronha, Henrique ; Agasse, Alice ; Martins, Ana Paula ; Berny, Marie C ; Gomes, Dulceneia ; Zarrouk, Olfa ; Thiebaud, Pierre ; Delrot, Serge ; Soveral, Graça ; Chaumont, François ; Gerós, Hernâni</creatorcontrib><description>Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast exhibited higher water permeability and lower activation energy for water transport than control vesicles, indicating the involvement of protein-mediated water diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, glucose, or inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to homogeneity from yeast ER membranes and the reconstitution of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel activity. To provide further insights into gene function, the expression of VvSIP1 in mature grapes was studied when vines were cultivated in different field conditions, but its transcript levels did not increase significantly in water-stressed plants and western-exposed berries. However, the expression of the aquaporin genes VvSIP1, VvPIP2;2, and VvTIP1;1 was up-regulated by heat in cultured cells.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/ert448</identifier><identifier>PMID: 24376256</identifier><language>eng</language><publisher>England: Oxford University Press [etc.]</publisher><subject>activation energy ; Animals ; Aquaporins ; Aquaporins - genetics ; Aquaporins - metabolism ; Berries ; Biological Transport ; Cell Membrane - metabolism ; Cell membranes ; cultured cells ; endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Environmental Sciences ; Gene Expression ; gene expression regulation ; Gene Expression Regulation, Plant ; genes ; Genes, Reporter ; glucose ; glycerol ; grapes ; heat ; Hot Temperature ; Imidazoles ; leaves ; Life Sciences ; mesophyll ; myo-inositol ; Nicotiana - genetics ; Nicotiana - metabolism ; Oocytes ; Permeability ; phosphatidylethanolamines ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stems - genetics ; Plant Stems - metabolism ; plantlets ; plasma membrane ; Proteins ; RESEARCH PAPER ; roots ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; small fruits ; solubilization ; Solutes ; sorbitol ; spectroscopy ; tobacco ; Up-Regulation ; urea ; Vegetal Biology ; vines ; Vitis ; Vitis - genetics ; Vitis - metabolism ; Water - metabolism ; Water channels ; water stress ; Xenopus ; Yeasts</subject><ispartof>Journal of experimental botany, 2014-03, Vol.65 (4), p.981-993</ispartof><rights>Society for Experimental Biology 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923</citedby><cites>FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923</cites><orcidid>0000-0003-1174-1616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24043520$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24043520$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24376256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02636655$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Noronha, Henrique</creatorcontrib><creatorcontrib>Agasse, Alice</creatorcontrib><creatorcontrib>Martins, Ana Paula</creatorcontrib><creatorcontrib>Berny, Marie C</creatorcontrib><creatorcontrib>Gomes, Dulceneia</creatorcontrib><creatorcontrib>Zarrouk, Olfa</creatorcontrib><creatorcontrib>Thiebaud, Pierre</creatorcontrib><creatorcontrib>Delrot, Serge</creatorcontrib><creatorcontrib>Soveral, Graça</creatorcontrib><creatorcontrib>Chaumont, François</creatorcontrib><creatorcontrib>Gerós, Hernâni</creatorcontrib><title>grape aquaporin VvSIP1 transports water across the ER membrane</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast exhibited higher water permeability and lower activation energy for water transport than control vesicles, indicating the involvement of protein-mediated water diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, glucose, or inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to homogeneity from yeast ER membranes and the reconstitution of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel activity. To provide further insights into gene function, the expression of VvSIP1 in mature grapes was studied when vines were cultivated in different field conditions, but its transcript levels did not increase significantly in water-stressed plants and western-exposed berries. However, the expression of the aquaporin genes VvSIP1, VvPIP2;2, and VvTIP1;1 was up-regulated by heat in cultured cells.</description><subject>activation energy</subject><subject>Animals</subject><subject>Aquaporins</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Berries</subject><subject>Biological Transport</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>cultured cells</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Environmental Sciences</subject><subject>Gene Expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>Genes, Reporter</subject><subject>glucose</subject><subject>glycerol</subject><subject>grapes</subject><subject>heat</subject><subject>Hot Temperature</subject><subject>Imidazoles</subject><subject>leaves</subject><subject>Life Sciences</subject><subject>mesophyll</subject><subject>myo-inositol</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Oocytes</subject><subject>Permeability</subject><subject>phosphatidylethanolamines</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stems - genetics</subject><subject>Plant Stems - metabolism</subject><subject>plantlets</subject><subject>plasma membrane</subject><subject>Proteins</subject><subject>RESEARCH PAPER</subject><subject>roots</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>small fruits</subject><subject>solubilization</subject><subject>Solutes</subject><subject>sorbitol</subject><subject>spectroscopy</subject><subject>tobacco</subject><subject>Up-Regulation</subject><subject>urea</subject><subject>Vegetal Biology</subject><subject>vines</subject><subject>Vitis</subject><subject>Vitis - genetics</subject><subject>Vitis - metabolism</subject><subject>Water - metabolism</subject><subject>Water channels</subject><subject>water stress</subject><subject>Xenopus</subject><subject>Yeasts</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFLwzAUxoMoOqcX72qPKtS9JH1pcxHGmE4YKE69hrRNtaO1W9JN_e-NVsWj7xJ43--9fLyPkAMK5xQkH8zf0oGxbRQlG6RHIwEhizjdJD0AxkKQGO-QXefmAICAuE12vB4LhqJHLp6sXphAL1d60djyJXhcz65vadBa_eJ8p3XBq26NDXRmG-eC9tkE47ugNnXqCbNHtgpdObP__fbJw-X4fjQJpzdX16PhNMyQYxsyxmTKRCyi3JdJ81xSyQw3PONFgjxHHtNMABNCFoymOuZMSp5pLDD3JO-T027vs67Uwpa1tu-q0aWaDKfqs-dHuRCIa-rZk45d2Ga5Mq5VdekyU1Xeb7NyiqLw_6Dn_4ECx4hJlnj0rEO_7mBN8WuDgvqMQfkYVBeDh4--967S2uS_6M_dPXDYAXPXNvaPDhFHBl4_7vRCN0o_2dKphxkD7weAxgkg_wC00ZOw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Noronha, Henrique</creator><creator>Agasse, Alice</creator><creator>Martins, Ana Paula</creator><creator>Berny, Marie C</creator><creator>Gomes, Dulceneia</creator><creator>Zarrouk, Olfa</creator><creator>Thiebaud, Pierre</creator><creator>Delrot, Serge</creator><creator>Soveral, Graça</creator><creator>Chaumont, François</creator><creator>Gerós, Hernâni</creator><general>Oxford University Press [etc.]</general><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7UA</scope><scope>C1K</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1174-1616</orcidid></search><sort><creationdate>20140301</creationdate><title>grape aquaporin VvSIP1 transports water across the ER membrane</title><author>Noronha, Henrique ; Agasse, Alice ; Martins, Ana Paula ; Berny, Marie C ; Gomes, Dulceneia ; Zarrouk, Olfa ; Thiebaud, Pierre ; Delrot, Serge ; Soveral, Graça ; Chaumont, François ; Gerós, Hernâni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>activation energy</topic><topic>Animals</topic><topic>Aquaporins</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Berries</topic><topic>Biological Transport</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>cultured cells</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Environmental Sciences</topic><topic>Gene Expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>Genes, Reporter</topic><topic>glucose</topic><topic>glycerol</topic><topic>grapes</topic><topic>heat</topic><topic>Hot Temperature</topic><topic>Imidazoles</topic><topic>leaves</topic><topic>Life Sciences</topic><topic>mesophyll</topic><topic>myo-inositol</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Oocytes</topic><topic>Permeability</topic><topic>phosphatidylethanolamines</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stems - genetics</topic><topic>Plant Stems - metabolism</topic><topic>plantlets</topic><topic>plasma membrane</topic><topic>Proteins</topic><topic>RESEARCH PAPER</topic><topic>roots</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>small fruits</topic><topic>solubilization</topic><topic>Solutes</topic><topic>sorbitol</topic><topic>spectroscopy</topic><topic>tobacco</topic><topic>Up-Regulation</topic><topic>urea</topic><topic>Vegetal Biology</topic><topic>vines</topic><topic>Vitis</topic><topic>Vitis - genetics</topic><topic>Vitis - metabolism</topic><topic>Water - metabolism</topic><topic>Water channels</topic><topic>water stress</topic><topic>Xenopus</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noronha, Henrique</creatorcontrib><creatorcontrib>Agasse, Alice</creatorcontrib><creatorcontrib>Martins, Ana Paula</creatorcontrib><creatorcontrib>Berny, Marie C</creatorcontrib><creatorcontrib>Gomes, Dulceneia</creatorcontrib><creatorcontrib>Zarrouk, Olfa</creatorcontrib><creatorcontrib>Thiebaud, Pierre</creatorcontrib><creatorcontrib>Delrot, Serge</creatorcontrib><creatorcontrib>Soveral, Graça</creatorcontrib><creatorcontrib>Chaumont, François</creatorcontrib><creatorcontrib>Gerós, Hernâni</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noronha, Henrique</au><au>Agasse, Alice</au><au>Martins, Ana Paula</au><au>Berny, Marie C</au><au>Gomes, Dulceneia</au><au>Zarrouk, Olfa</au><au>Thiebaud, Pierre</au><au>Delrot, Serge</au><au>Soveral, Graça</au><au>Chaumont, François</au><au>Gerós, Hernâni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>grape aquaporin VvSIP1 transports water across the ER membrane</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>65</volume><issue>4</issue><spage>981</spage><epage>993</epage><pages>981-993</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast exhibited higher water permeability and lower activation energy for water transport than control vesicles, indicating the involvement of protein-mediated water diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, glucose, or inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to homogeneity from yeast ER membranes and the reconstitution of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel activity. To provide further insights into gene function, the expression of VvSIP1 in mature grapes was studied when vines were cultivated in different field conditions, but its transcript levels did not increase significantly in water-stressed plants and western-exposed berries. However, the expression of the aquaporin genes VvSIP1, VvPIP2;2, and VvTIP1;1 was up-regulated by heat in cultured cells.</abstract><cop>England</cop><pub>Oxford University Press [etc.]</pub><pmid>24376256</pmid><doi>10.1093/jxb/ert448</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1174-1616</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2014-03, Vol.65 (4), p.981-993 |
issn | 0022-0957 1460-2431 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02636655v1 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | activation energy Animals Aquaporins Aquaporins - genetics Aquaporins - metabolism Berries Biological Transport Cell Membrane - metabolism Cell membranes cultured cells endoplasmic reticulum Endoplasmic Reticulum - metabolism Environmental Sciences Gene Expression gene expression regulation Gene Expression Regulation, Plant genes Genes, Reporter glucose glycerol grapes heat Hot Temperature Imidazoles leaves Life Sciences mesophyll myo-inositol Nicotiana - genetics Nicotiana - metabolism Oocytes Permeability phosphatidylethanolamines Plant Leaves - genetics Plant Leaves - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plant Stems - genetics Plant Stems - metabolism plantlets plasma membrane Proteins RESEARCH PAPER roots Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism small fruits solubilization Solutes sorbitol spectroscopy tobacco Up-Regulation urea Vegetal Biology vines Vitis Vitis - genetics Vitis - metabolism Water - metabolism Water channels water stress Xenopus Yeasts |
title | grape aquaporin VvSIP1 transports water across the ER membrane |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=grape%20aquaporin%20VvSIP1%20transports%20water%20across%20the%20ER%20membrane&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Noronha,%20Henrique&rft.date=2014-03-01&rft.volume=65&rft.issue=4&rft.spage=981&rft.epage=993&rft.pages=981-993&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/ert448&rft_dat=%3Cjstor_hal_p%3E24043520%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503542928&rft_id=info:pmid/24376256&rft_jstor_id=24043520&rfr_iscdi=true |