Loading…

grape aquaporin VvSIP1 transports water across the ER membrane

Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2014-03, Vol.65 (4), p.981-993
Main Authors: Noronha, Henrique, Agasse, Alice, Martins, Ana Paula, Berny, Marie C, Gomes, Dulceneia, Zarrouk, Olfa, Thiebaud, Pierre, Delrot, Serge, Soveral, Graça, Chaumont, François, Gerós, Hernâni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923
cites cdi_FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923
container_end_page 993
container_issue 4
container_start_page 981
container_title Journal of experimental botany
container_volume 65
creator Noronha, Henrique
Agasse, Alice
Martins, Ana Paula
Berny, Marie C
Gomes, Dulceneia
Zarrouk, Olfa
Thiebaud, Pierre
Delrot, Serge
Soveral, Graça
Chaumont, François
Gerós, Hernâni
description Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast exhibited higher water permeability and lower activation energy for water transport than control vesicles, indicating the involvement of protein-mediated water diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, glucose, or inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to homogeneity from yeast ER membranes and the reconstitution of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel activity. To provide further insights into gene function, the expression of VvSIP1 in mature grapes was studied when vines were cultivated in different field conditions, but its transcript levels did not increase significantly in water-stressed plants and western-exposed berries. However, the expression of the aquaporin genes VvSIP1, VvPIP2;2, and VvTIP1;1 was up-regulated by heat in cultured cells.
doi_str_mv 10.1093/jxb/ert448
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02636655v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24043520</jstor_id><sourcerecordid>24043520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923</originalsourceid><addsrcrecordid>eNqNkcFLwzAUxoMoOqcX72qPKtS9JH1pcxHGmE4YKE69hrRNtaO1W9JN_e-NVsWj7xJ43--9fLyPkAMK5xQkH8zf0oGxbRQlG6RHIwEhizjdJD0AxkKQGO-QXefmAICAuE12vB4LhqJHLp6sXphAL1d60djyJXhcz65vadBa_eJ8p3XBq26NDXRmG-eC9tkE47ugNnXqCbNHtgpdObP__fbJw-X4fjQJpzdX16PhNMyQYxsyxmTKRCyi3JdJ81xSyQw3PONFgjxHHtNMABNCFoymOuZMSp5pLDD3JO-T027vs67Uwpa1tu-q0aWaDKfqs-dHuRCIa-rZk45d2Ga5Mq5VdekyU1Xeb7NyiqLw_6Dn_4ECx4hJlnj0rEO_7mBN8WuDgvqMQfkYVBeDh4--967S2uS_6M_dPXDYAXPXNvaPDhFHBl4_7vRCN0o_2dKphxkD7weAxgkg_wC00ZOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503542928</pqid></control><display><type>article</type><title>grape aquaporin VvSIP1 transports water across the ER membrane</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Noronha, Henrique ; Agasse, Alice ; Martins, Ana Paula ; Berny, Marie C ; Gomes, Dulceneia ; Zarrouk, Olfa ; Thiebaud, Pierre ; Delrot, Serge ; Soveral, Graça ; Chaumont, François ; Gerós, Hernâni</creator><creatorcontrib>Noronha, Henrique ; Agasse, Alice ; Martins, Ana Paula ; Berny, Marie C ; Gomes, Dulceneia ; Zarrouk, Olfa ; Thiebaud, Pierre ; Delrot, Serge ; Soveral, Graça ; Chaumont, François ; Gerós, Hernâni</creatorcontrib><description>Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast exhibited higher water permeability and lower activation energy for water transport than control vesicles, indicating the involvement of protein-mediated water diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, glucose, or inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to homogeneity from yeast ER membranes and the reconstitution of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel activity. To provide further insights into gene function, the expression of VvSIP1 in mature grapes was studied when vines were cultivated in different field conditions, but its transcript levels did not increase significantly in water-stressed plants and western-exposed berries. However, the expression of the aquaporin genes VvSIP1, VvPIP2;2, and VvTIP1;1 was up-regulated by heat in cultured cells.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/ert448</identifier><identifier>PMID: 24376256</identifier><language>eng</language><publisher>England: Oxford University Press [etc.]</publisher><subject>activation energy ; Animals ; Aquaporins ; Aquaporins - genetics ; Aquaporins - metabolism ; Berries ; Biological Transport ; Cell Membrane - metabolism ; Cell membranes ; cultured cells ; endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Environmental Sciences ; Gene Expression ; gene expression regulation ; Gene Expression Regulation, Plant ; genes ; Genes, Reporter ; glucose ; glycerol ; grapes ; heat ; Hot Temperature ; Imidazoles ; leaves ; Life Sciences ; mesophyll ; myo-inositol ; Nicotiana - genetics ; Nicotiana - metabolism ; Oocytes ; Permeability ; phosphatidylethanolamines ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stems - genetics ; Plant Stems - metabolism ; plantlets ; plasma membrane ; Proteins ; RESEARCH PAPER ; roots ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; small fruits ; solubilization ; Solutes ; sorbitol ; spectroscopy ; tobacco ; Up-Regulation ; urea ; Vegetal Biology ; vines ; Vitis ; Vitis - genetics ; Vitis - metabolism ; Water - metabolism ; Water channels ; water stress ; Xenopus ; Yeasts</subject><ispartof>Journal of experimental botany, 2014-03, Vol.65 (4), p.981-993</ispartof><rights>Society for Experimental Biology 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923</citedby><cites>FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923</cites><orcidid>0000-0003-1174-1616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24043520$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24043520$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24376256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02636655$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Noronha, Henrique</creatorcontrib><creatorcontrib>Agasse, Alice</creatorcontrib><creatorcontrib>Martins, Ana Paula</creatorcontrib><creatorcontrib>Berny, Marie C</creatorcontrib><creatorcontrib>Gomes, Dulceneia</creatorcontrib><creatorcontrib>Zarrouk, Olfa</creatorcontrib><creatorcontrib>Thiebaud, Pierre</creatorcontrib><creatorcontrib>Delrot, Serge</creatorcontrib><creatorcontrib>Soveral, Graça</creatorcontrib><creatorcontrib>Chaumont, François</creatorcontrib><creatorcontrib>Gerós, Hernâni</creatorcontrib><title>grape aquaporin VvSIP1 transports water across the ER membrane</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast exhibited higher water permeability and lower activation energy for water transport than control vesicles, indicating the involvement of protein-mediated water diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, glucose, or inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to homogeneity from yeast ER membranes and the reconstitution of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel activity. To provide further insights into gene function, the expression of VvSIP1 in mature grapes was studied when vines were cultivated in different field conditions, but its transcript levels did not increase significantly in water-stressed plants and western-exposed berries. However, the expression of the aquaporin genes VvSIP1, VvPIP2;2, and VvTIP1;1 was up-regulated by heat in cultured cells.</description><subject>activation energy</subject><subject>Animals</subject><subject>Aquaporins</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Berries</subject><subject>Biological Transport</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>cultured cells</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Environmental Sciences</subject><subject>Gene Expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>Genes, Reporter</subject><subject>glucose</subject><subject>glycerol</subject><subject>grapes</subject><subject>heat</subject><subject>Hot Temperature</subject><subject>Imidazoles</subject><subject>leaves</subject><subject>Life Sciences</subject><subject>mesophyll</subject><subject>myo-inositol</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Oocytes</subject><subject>Permeability</subject><subject>phosphatidylethanolamines</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stems - genetics</subject><subject>Plant Stems - metabolism</subject><subject>plantlets</subject><subject>plasma membrane</subject><subject>Proteins</subject><subject>RESEARCH PAPER</subject><subject>roots</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>small fruits</subject><subject>solubilization</subject><subject>Solutes</subject><subject>sorbitol</subject><subject>spectroscopy</subject><subject>tobacco</subject><subject>Up-Regulation</subject><subject>urea</subject><subject>Vegetal Biology</subject><subject>vines</subject><subject>Vitis</subject><subject>Vitis - genetics</subject><subject>Vitis - metabolism</subject><subject>Water - metabolism</subject><subject>Water channels</subject><subject>water stress</subject><subject>Xenopus</subject><subject>Yeasts</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFLwzAUxoMoOqcX72qPKtS9JH1pcxHGmE4YKE69hrRNtaO1W9JN_e-NVsWj7xJ43--9fLyPkAMK5xQkH8zf0oGxbRQlG6RHIwEhizjdJD0AxkKQGO-QXefmAICAuE12vB4LhqJHLp6sXphAL1d60djyJXhcz65vadBa_eJ8p3XBq26NDXRmG-eC9tkE47ugNnXqCbNHtgpdObP__fbJw-X4fjQJpzdX16PhNMyQYxsyxmTKRCyi3JdJ81xSyQw3PONFgjxHHtNMABNCFoymOuZMSp5pLDD3JO-T027vs67Uwpa1tu-q0aWaDKfqs-dHuRCIa-rZk45d2Ga5Mq5VdekyU1Xeb7NyiqLw_6Dn_4ECx4hJlnj0rEO_7mBN8WuDgvqMQfkYVBeDh4--967S2uS_6M_dPXDYAXPXNvaPDhFHBl4_7vRCN0o_2dKphxkD7weAxgkg_wC00ZOw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Noronha, Henrique</creator><creator>Agasse, Alice</creator><creator>Martins, Ana Paula</creator><creator>Berny, Marie C</creator><creator>Gomes, Dulceneia</creator><creator>Zarrouk, Olfa</creator><creator>Thiebaud, Pierre</creator><creator>Delrot, Serge</creator><creator>Soveral, Graça</creator><creator>Chaumont, François</creator><creator>Gerós, Hernâni</creator><general>Oxford University Press [etc.]</general><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7UA</scope><scope>C1K</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1174-1616</orcidid></search><sort><creationdate>20140301</creationdate><title>grape aquaporin VvSIP1 transports water across the ER membrane</title><author>Noronha, Henrique ; Agasse, Alice ; Martins, Ana Paula ; Berny, Marie C ; Gomes, Dulceneia ; Zarrouk, Olfa ; Thiebaud, Pierre ; Delrot, Serge ; Soveral, Graça ; Chaumont, François ; Gerós, Hernâni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>activation energy</topic><topic>Animals</topic><topic>Aquaporins</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Berries</topic><topic>Biological Transport</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>cultured cells</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Environmental Sciences</topic><topic>Gene Expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>Genes, Reporter</topic><topic>glucose</topic><topic>glycerol</topic><topic>grapes</topic><topic>heat</topic><topic>Hot Temperature</topic><topic>Imidazoles</topic><topic>leaves</topic><topic>Life Sciences</topic><topic>mesophyll</topic><topic>myo-inositol</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Oocytes</topic><topic>Permeability</topic><topic>phosphatidylethanolamines</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stems - genetics</topic><topic>Plant Stems - metabolism</topic><topic>plantlets</topic><topic>plasma membrane</topic><topic>Proteins</topic><topic>RESEARCH PAPER</topic><topic>roots</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>small fruits</topic><topic>solubilization</topic><topic>Solutes</topic><topic>sorbitol</topic><topic>spectroscopy</topic><topic>tobacco</topic><topic>Up-Regulation</topic><topic>urea</topic><topic>Vegetal Biology</topic><topic>vines</topic><topic>Vitis</topic><topic>Vitis - genetics</topic><topic>Vitis - metabolism</topic><topic>Water - metabolism</topic><topic>Water channels</topic><topic>water stress</topic><topic>Xenopus</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noronha, Henrique</creatorcontrib><creatorcontrib>Agasse, Alice</creatorcontrib><creatorcontrib>Martins, Ana Paula</creatorcontrib><creatorcontrib>Berny, Marie C</creatorcontrib><creatorcontrib>Gomes, Dulceneia</creatorcontrib><creatorcontrib>Zarrouk, Olfa</creatorcontrib><creatorcontrib>Thiebaud, Pierre</creatorcontrib><creatorcontrib>Delrot, Serge</creatorcontrib><creatorcontrib>Soveral, Graça</creatorcontrib><creatorcontrib>Chaumont, François</creatorcontrib><creatorcontrib>Gerós, Hernâni</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noronha, Henrique</au><au>Agasse, Alice</au><au>Martins, Ana Paula</au><au>Berny, Marie C</au><au>Gomes, Dulceneia</au><au>Zarrouk, Olfa</au><au>Thiebaud, Pierre</au><au>Delrot, Serge</au><au>Soveral, Graça</au><au>Chaumont, François</au><au>Gerós, Hernâni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>grape aquaporin VvSIP1 transports water across the ER membrane</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>65</volume><issue>4</issue><spage>981</spage><epage>993</epage><pages>981-993</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast exhibited higher water permeability and lower activation energy for water transport than control vesicles, indicating the involvement of protein-mediated water diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, glucose, or inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to homogeneity from yeast ER membranes and the reconstitution of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel activity. To provide further insights into gene function, the expression of VvSIP1 in mature grapes was studied when vines were cultivated in different field conditions, but its transcript levels did not increase significantly in water-stressed plants and western-exposed berries. However, the expression of the aquaporin genes VvSIP1, VvPIP2;2, and VvTIP1;1 was up-regulated by heat in cultured cells.</abstract><cop>England</cop><pub>Oxford University Press [etc.]</pub><pmid>24376256</pmid><doi>10.1093/jxb/ert448</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1174-1616</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2014-03, Vol.65 (4), p.981-993
issn 0022-0957
1460-2431
language eng
recordid cdi_hal_primary_oai_HAL_hal_02636655v1
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects activation energy
Animals
Aquaporins
Aquaporins - genetics
Aquaporins - metabolism
Berries
Biological Transport
Cell Membrane - metabolism
Cell membranes
cultured cells
endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Environmental Sciences
Gene Expression
gene expression regulation
Gene Expression Regulation, Plant
genes
Genes, Reporter
glucose
glycerol
grapes
heat
Hot Temperature
Imidazoles
leaves
Life Sciences
mesophyll
myo-inositol
Nicotiana - genetics
Nicotiana - metabolism
Oocytes
Permeability
phosphatidylethanolamines
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Stems - genetics
Plant Stems - metabolism
plantlets
plasma membrane
Proteins
RESEARCH PAPER
roots
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
small fruits
solubilization
Solutes
sorbitol
spectroscopy
tobacco
Up-Regulation
urea
Vegetal Biology
vines
Vitis
Vitis - genetics
Vitis - metabolism
Water - metabolism
Water channels
water stress
Xenopus
Yeasts
title grape aquaporin VvSIP1 transports water across the ER membrane
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=grape%20aquaporin%20VvSIP1%20transports%20water%20across%20the%20ER%20membrane&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Noronha,%20Henrique&rft.date=2014-03-01&rft.volume=65&rft.issue=4&rft.spage=981&rft.epage=993&rft.pages=981-993&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/ert448&rft_dat=%3Cjstor_hal_p%3E24043520%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-2229b26764ddddebdd9192e3e3c3f853d5371c602669f21ba732993ca5f5d1923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503542928&rft_id=info:pmid/24376256&rft_jstor_id=24043520&rfr_iscdi=true