Loading…

The ZmASR1 Protein Influences Branched-Chain Amino Acid Biosynthesis and Maintains Kernel Yield in Maize under Water-Limited Conditions

Abscisic acid-, stress-, and ripening-induced (ASR) proteins were first described about 15 years ago as accumulating to high levels during plant developmental processes and in response to diverse stresses. Currently, the effects of ASRs on water deficit tolerance and the ways in which their physiolo...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2011-10, Vol.157 (2), p.917-936
Main Authors: Virlouvet, Laetitia, Jacquemot, Marie-Pierre, Gerentes, Denise, Corti, Hélène, Bouton, Sophie, Gilard, Françoise, Valot, Benoît, Trouverie, Jacques, Tcherkez, Guillaume, Falque, Matthieu, Damerval, Catherine, Rogowsky, Peter, Perez, Pascual, Noctor, Graham, Zivy, Michel, Coursol, Sylvie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-6fbc1ffae1e8b66255d78e8094e3e5ab1e6e384b0a590dba1d95d54830d99c6b3
cites cdi_FETCH-LOGICAL-c417t-6fbc1ffae1e8b66255d78e8094e3e5ab1e6e384b0a590dba1d95d54830d99c6b3
container_end_page 936
container_issue 2
container_start_page 917
container_title Plant physiology (Bethesda)
container_volume 157
creator Virlouvet, Laetitia
Jacquemot, Marie-Pierre
Gerentes, Denise
Corti, Hélène
Bouton, Sophie
Gilard, Françoise
Valot, Benoît
Trouverie, Jacques
Tcherkez, Guillaume
Falque, Matthieu
Damerval, Catherine
Rogowsky, Peter
Perez, Pascual
Noctor, Graham
Zivy, Michel
Coursol, Sylvie
description Abscisic acid-, stress-, and ripening-induced (ASR) proteins were first described about 15 years ago as accumulating to high levels during plant developmental processes and in response to diverse stresses. Currently, the effects of ASRs on water deficit tolerance and the ways in which their physiological and biochemical functions lead to this stress tolerance remain poorly understood. Here, we characterized the ASR gene family from maize (Zea mays), which contains nine paralogous genes, and showed that maize ASR1 (ZmASR1) was encoded by one of the most highly expressed paralogs. Ectopic expression of ZmASR1 had a large overall impact on maize yield that was maintained under water-limited stress conditions in the field. Comparative transcriptomic and proteomic analyses of wild-type and ZmASR1 -overexpressing leaves led to the identification of three transcripts and 16 proteins up-or down-regulated by ZmASR1. The majority of them were involved in primary and/or cellular metabolic processes, including branched-chain amino acid (BCAA) biosynthesis. Metabolomic and transcript analyses further indicated that ZmASR1 -overexpressing plants showed a decrease in BCAA compounds and changes in BCAA-related gene expression in comparison with wild-type plants. Interestingly, within-group correlation matrix analysis revealed a close link between 13 decreased metabolites in ZmASR1 -overexpressing leaves, including two A As. Among these 13 metabolites, six were previously shown to be negatively correlated to biomass, suggesting that ZmASR1-dependent regulation of these 13 metabolites might contribute to regulate leaf growth, resulting in improvement in kernel yield.
doi_str_mv 10.1104/pp.111.176818
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02647863v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435701</jstor_id><sourcerecordid>41435701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6fbc1ffae1e8b66255d78e8094e3e5ab1e6e384b0a590dba1d95d54830d99c6b3</originalsourceid><addsrcrecordid>eNpF0UGL1DAUB_AgijuuHj0quYh46JrXJml67A7qLo4ouiJ6KWnzymRpk5q0wvoF_Npm6Dgewgt5v7zD-xPyFNgFAOOvpylVuIBSKlD3yAZEkWe54Oo-2TCW7kyp6ow8ivGWMQYF8IfkLAclcg5yQ_7c7JH-GOsvn4F-Cn5G6-i164cFXYeRXgbtuj2abLvXqVOP1nlad9bQS-vjnZv3GG2k2hn6IYE5nUjfY3A40O8WB0PTr9T5jXRxBgP9pmcM2c6OdkZDt94ZO1vv4mPyoNdDxCfHek6-vn1zs73Kdh_fXW_rXdZxKOdM9m0Hfa8RULVS5kKYUqFiFccChW4BJRaKt0yLiplWg6mEScsomKmqTrbFOXm1zt3roZmCHXW4a7y2zVW9aw5vLJe8VLL4Bcm-XO0U_M8F49yMNnY4DNqhX2KjKinyshRlktkqu-BjDNifRgNrDjE105QqNGtMyT8_Tl7aEc1J_8slgRdHoGOnh_4Qg43_HReVkDxP7tnqbuPsw6nPgReiTGn_Ba4kpAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896527757</pqid></control><display><type>article</type><title>The ZmASR1 Protein Influences Branched-Chain Amino Acid Biosynthesis and Maintains Kernel Yield in Maize under Water-Limited Conditions</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Virlouvet, Laetitia ; Jacquemot, Marie-Pierre ; Gerentes, Denise ; Corti, Hélène ; Bouton, Sophie ; Gilard, Françoise ; Valot, Benoît ; Trouverie, Jacques ; Tcherkez, Guillaume ; Falque, Matthieu ; Damerval, Catherine ; Rogowsky, Peter ; Perez, Pascual ; Noctor, Graham ; Zivy, Michel ; Coursol, Sylvie</creator><creatorcontrib>Virlouvet, Laetitia ; Jacquemot, Marie-Pierre ; Gerentes, Denise ; Corti, Hélène ; Bouton, Sophie ; Gilard, Françoise ; Valot, Benoît ; Trouverie, Jacques ; Tcherkez, Guillaume ; Falque, Matthieu ; Damerval, Catherine ; Rogowsky, Peter ; Perez, Pascual ; Noctor, Graham ; Zivy, Michel ; Coursol, Sylvie</creatorcontrib><description>Abscisic acid-, stress-, and ripening-induced (ASR) proteins were first described about 15 years ago as accumulating to high levels during plant developmental processes and in response to diverse stresses. Currently, the effects of ASRs on water deficit tolerance and the ways in which their physiological and biochemical functions lead to this stress tolerance remain poorly understood. Here, we characterized the ASR gene family from maize (Zea mays), which contains nine paralogous genes, and showed that maize ASR1 (ZmASR1) was encoded by one of the most highly expressed paralogs. Ectopic expression of ZmASR1 had a large overall impact on maize yield that was maintained under water-limited stress conditions in the field. Comparative transcriptomic and proteomic analyses of wild-type and ZmASR1 -overexpressing leaves led to the identification of three transcripts and 16 proteins up-or down-regulated by ZmASR1. The majority of them were involved in primary and/or cellular metabolic processes, including branched-chain amino acid (BCAA) biosynthesis. Metabolomic and transcript analyses further indicated that ZmASR1 -overexpressing plants showed a decrease in BCAA compounds and changes in BCAA-related gene expression in comparison with wild-type plants. Interestingly, within-group correlation matrix analysis revealed a close link between 13 decreased metabolites in ZmASR1 -overexpressing leaves, including two A As. Among these 13 metabolites, six were previously shown to be negatively correlated to biomass, suggesting that ZmASR1-dependent regulation of these 13 metabolites might contribute to regulate leaf growth, resulting in improvement in kernel yield.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.176818</identifier><identifier>PMID: 21852416</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Amino Acid Sequence ; Amino acids ; Amino Acids, Branched-Chain - metabolism ; Biological and medical sciences ; Biosynthesis ; Branched chain amino acids ; Corn ; Dehydration ; ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genes ; Leaves ; Life Sciences ; Molecular Sequence Data ; Multigene Family ; Plant Leaves - physiology ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Protein metabolism ; Proteins ; Proteomics ; Seeds - growth &amp; development ; Stress, Physiological ; Vegetal Biology ; Water ; Zea mays - genetics</subject><ispartof>Plant physiology (Bethesda), 2011-10, Vol.157 (2), p.917-936</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6fbc1ffae1e8b66255d78e8094e3e5ab1e6e384b0a590dba1d95d54830d99c6b3</citedby><cites>FETCH-LOGICAL-c417t-6fbc1ffae1e8b66255d78e8094e3e5ab1e6e384b0a590dba1d95d54830d99c6b3</cites><orcidid>0000-0002-6444-858X ; 0000-0001-8689-310X ; 0000-0002-7317-4971 ; 0000-0002-3931-0263 ; 0000-0002-3339-956X ; 0000-0001-9314-1555 ; 0000-0002-6629-2400 ; 0000-0002-1450-896X ; 0000-0003-4822-3783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435701$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435701$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24595642$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21852416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02647863$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Virlouvet, Laetitia</creatorcontrib><creatorcontrib>Jacquemot, Marie-Pierre</creatorcontrib><creatorcontrib>Gerentes, Denise</creatorcontrib><creatorcontrib>Corti, Hélène</creatorcontrib><creatorcontrib>Bouton, Sophie</creatorcontrib><creatorcontrib>Gilard, Françoise</creatorcontrib><creatorcontrib>Valot, Benoît</creatorcontrib><creatorcontrib>Trouverie, Jacques</creatorcontrib><creatorcontrib>Tcherkez, Guillaume</creatorcontrib><creatorcontrib>Falque, Matthieu</creatorcontrib><creatorcontrib>Damerval, Catherine</creatorcontrib><creatorcontrib>Rogowsky, Peter</creatorcontrib><creatorcontrib>Perez, Pascual</creatorcontrib><creatorcontrib>Noctor, Graham</creatorcontrib><creatorcontrib>Zivy, Michel</creatorcontrib><creatorcontrib>Coursol, Sylvie</creatorcontrib><title>The ZmASR1 Protein Influences Branched-Chain Amino Acid Biosynthesis and Maintains Kernel Yield in Maize under Water-Limited Conditions</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Abscisic acid-, stress-, and ripening-induced (ASR) proteins were first described about 15 years ago as accumulating to high levels during plant developmental processes and in response to diverse stresses. Currently, the effects of ASRs on water deficit tolerance and the ways in which their physiological and biochemical functions lead to this stress tolerance remain poorly understood. Here, we characterized the ASR gene family from maize (Zea mays), which contains nine paralogous genes, and showed that maize ASR1 (ZmASR1) was encoded by one of the most highly expressed paralogs. Ectopic expression of ZmASR1 had a large overall impact on maize yield that was maintained under water-limited stress conditions in the field. Comparative transcriptomic and proteomic analyses of wild-type and ZmASR1 -overexpressing leaves led to the identification of three transcripts and 16 proteins up-or down-regulated by ZmASR1. The majority of them were involved in primary and/or cellular metabolic processes, including branched-chain amino acid (BCAA) biosynthesis. Metabolomic and transcript analyses further indicated that ZmASR1 -overexpressing plants showed a decrease in BCAA compounds and changes in BCAA-related gene expression in comparison with wild-type plants. Interestingly, within-group correlation matrix analysis revealed a close link between 13 decreased metabolites in ZmASR1 -overexpressing leaves, including two A As. Among these 13 metabolites, six were previously shown to be negatively correlated to biomass, suggesting that ZmASR1-dependent regulation of these 13 metabolites might contribute to regulate leaf growth, resulting in improvement in kernel yield.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Amino Acids, Branched-Chain - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Branched chain amino acids</subject><subject>Corn</subject><subject>Dehydration</subject><subject>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Plant Leaves - physiology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Protein metabolism</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Seeds - growth &amp; development</subject><subject>Stress, Physiological</subject><subject>Vegetal Biology</subject><subject>Water</subject><subject>Zea mays - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpF0UGL1DAUB_AgijuuHj0quYh46JrXJml67A7qLo4ouiJ6KWnzymRpk5q0wvoF_Npm6Dgewgt5v7zD-xPyFNgFAOOvpylVuIBSKlD3yAZEkWe54Oo-2TCW7kyp6ow8ivGWMQYF8IfkLAclcg5yQ_7c7JH-GOsvn4F-Cn5G6-i164cFXYeRXgbtuj2abLvXqVOP1nlad9bQS-vjnZv3GG2k2hn6IYE5nUjfY3A40O8WB0PTr9T5jXRxBgP9pmcM2c6OdkZDt94ZO1vv4mPyoNdDxCfHek6-vn1zs73Kdh_fXW_rXdZxKOdM9m0Hfa8RULVS5kKYUqFiFccChW4BJRaKt0yLiplWg6mEScsomKmqTrbFOXm1zt3roZmCHXW4a7y2zVW9aw5vLJe8VLL4Bcm-XO0U_M8F49yMNnY4DNqhX2KjKinyshRlktkqu-BjDNifRgNrDjE105QqNGtMyT8_Tl7aEc1J_8slgRdHoGOnh_4Qg43_HReVkDxP7tnqbuPsw6nPgReiTGn_Ba4kpAQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Virlouvet, Laetitia</creator><creator>Jacquemot, Marie-Pierre</creator><creator>Gerentes, Denise</creator><creator>Corti, Hélène</creator><creator>Bouton, Sophie</creator><creator>Gilard, Françoise</creator><creator>Valot, Benoît</creator><creator>Trouverie, Jacques</creator><creator>Tcherkez, Guillaume</creator><creator>Falque, Matthieu</creator><creator>Damerval, Catherine</creator><creator>Rogowsky, Peter</creator><creator>Perez, Pascual</creator><creator>Noctor, Graham</creator><creator>Zivy, Michel</creator><creator>Coursol, Sylvie</creator><general>American Society of Plant Biologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6444-858X</orcidid><orcidid>https://orcid.org/0000-0001-8689-310X</orcidid><orcidid>https://orcid.org/0000-0002-7317-4971</orcidid><orcidid>https://orcid.org/0000-0002-3931-0263</orcidid><orcidid>https://orcid.org/0000-0002-3339-956X</orcidid><orcidid>https://orcid.org/0000-0001-9314-1555</orcidid><orcidid>https://orcid.org/0000-0002-6629-2400</orcidid><orcidid>https://orcid.org/0000-0002-1450-896X</orcidid><orcidid>https://orcid.org/0000-0003-4822-3783</orcidid></search><sort><creationdate>20111001</creationdate><title>The ZmASR1 Protein Influences Branched-Chain Amino Acid Biosynthesis and Maintains Kernel Yield in Maize under Water-Limited Conditions</title><author>Virlouvet, Laetitia ; Jacquemot, Marie-Pierre ; Gerentes, Denise ; Corti, Hélène ; Bouton, Sophie ; Gilard, Françoise ; Valot, Benoît ; Trouverie, Jacques ; Tcherkez, Guillaume ; Falque, Matthieu ; Damerval, Catherine ; Rogowsky, Peter ; Perez, Pascual ; Noctor, Graham ; Zivy, Michel ; Coursol, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6fbc1ffae1e8b66255d78e8094e3e5ab1e6e384b0a590dba1d95d54830d99c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Amino Acids, Branched-Chain - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Branched chain amino acids</topic><topic>Corn</topic><topic>Dehydration</topic><topic>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Plant Leaves - physiology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Protein metabolism</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Seeds - growth &amp; development</topic><topic>Stress, Physiological</topic><topic>Vegetal Biology</topic><topic>Water</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virlouvet, Laetitia</creatorcontrib><creatorcontrib>Jacquemot, Marie-Pierre</creatorcontrib><creatorcontrib>Gerentes, Denise</creatorcontrib><creatorcontrib>Corti, Hélène</creatorcontrib><creatorcontrib>Bouton, Sophie</creatorcontrib><creatorcontrib>Gilard, Françoise</creatorcontrib><creatorcontrib>Valot, Benoît</creatorcontrib><creatorcontrib>Trouverie, Jacques</creatorcontrib><creatorcontrib>Tcherkez, Guillaume</creatorcontrib><creatorcontrib>Falque, Matthieu</creatorcontrib><creatorcontrib>Damerval, Catherine</creatorcontrib><creatorcontrib>Rogowsky, Peter</creatorcontrib><creatorcontrib>Perez, Pascual</creatorcontrib><creatorcontrib>Noctor, Graham</creatorcontrib><creatorcontrib>Zivy, Michel</creatorcontrib><creatorcontrib>Coursol, Sylvie</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virlouvet, Laetitia</au><au>Jacquemot, Marie-Pierre</au><au>Gerentes, Denise</au><au>Corti, Hélène</au><au>Bouton, Sophie</au><au>Gilard, Françoise</au><au>Valot, Benoît</au><au>Trouverie, Jacques</au><au>Tcherkez, Guillaume</au><au>Falque, Matthieu</au><au>Damerval, Catherine</au><au>Rogowsky, Peter</au><au>Perez, Pascual</au><au>Noctor, Graham</au><au>Zivy, Michel</au><au>Coursol, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ZmASR1 Protein Influences Branched-Chain Amino Acid Biosynthesis and Maintains Kernel Yield in Maize under Water-Limited Conditions</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>157</volume><issue>2</issue><spage>917</spage><epage>936</epage><pages>917-936</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Abscisic acid-, stress-, and ripening-induced (ASR) proteins were first described about 15 years ago as accumulating to high levels during plant developmental processes and in response to diverse stresses. Currently, the effects of ASRs on water deficit tolerance and the ways in which their physiological and biochemical functions lead to this stress tolerance remain poorly understood. Here, we characterized the ASR gene family from maize (Zea mays), which contains nine paralogous genes, and showed that maize ASR1 (ZmASR1) was encoded by one of the most highly expressed paralogs. Ectopic expression of ZmASR1 had a large overall impact on maize yield that was maintained under water-limited stress conditions in the field. Comparative transcriptomic and proteomic analyses of wild-type and ZmASR1 -overexpressing leaves led to the identification of three transcripts and 16 proteins up-or down-regulated by ZmASR1. The majority of them were involved in primary and/or cellular metabolic processes, including branched-chain amino acid (BCAA) biosynthesis. Metabolomic and transcript analyses further indicated that ZmASR1 -overexpressing plants showed a decrease in BCAA compounds and changes in BCAA-related gene expression in comparison with wild-type plants. Interestingly, within-group correlation matrix analysis revealed a close link between 13 decreased metabolites in ZmASR1 -overexpressing leaves, including two A As. Among these 13 metabolites, six were previously shown to be negatively correlated to biomass, suggesting that ZmASR1-dependent regulation of these 13 metabolites might contribute to regulate leaf growth, resulting in improvement in kernel yield.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21852416</pmid><doi>10.1104/pp.111.176818</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6444-858X</orcidid><orcidid>https://orcid.org/0000-0001-8689-310X</orcidid><orcidid>https://orcid.org/0000-0002-7317-4971</orcidid><orcidid>https://orcid.org/0000-0002-3931-0263</orcidid><orcidid>https://orcid.org/0000-0002-3339-956X</orcidid><orcidid>https://orcid.org/0000-0001-9314-1555</orcidid><orcidid>https://orcid.org/0000-0002-6629-2400</orcidid><orcidid>https://orcid.org/0000-0002-1450-896X</orcidid><orcidid>https://orcid.org/0000-0003-4822-3783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2011-10, Vol.157 (2), p.917-936
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_hal_primary_oai_HAL_hal_02647863v1
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Amino Acid Sequence
Amino acids
Amino Acids, Branched-Chain - metabolism
Biological and medical sciences
Biosynthesis
Branched chain amino acids
Corn
Dehydration
ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Genes
Leaves
Life Sciences
Molecular Sequence Data
Multigene Family
Plant Leaves - physiology
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Protein metabolism
Proteins
Proteomics
Seeds - growth & development
Stress, Physiological
Vegetal Biology
Water
Zea mays - genetics
title The ZmASR1 Protein Influences Branched-Chain Amino Acid Biosynthesis and Maintains Kernel Yield in Maize under Water-Limited Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ZmASR1%20Protein%20Influences%20Branched-Chain%20Amino%20Acid%20Biosynthesis%20and%20Maintains%20Kernel%20Yield%20in%20Maize%20under%20Water-Limited%20Conditions&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Virlouvet,%20Laetitia&rft.date=2011-10-01&rft.volume=157&rft.issue=2&rft.spage=917&rft.epage=936&rft.pages=917-936&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.176818&rft_dat=%3Cjstor_hal_p%3E41435701%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-6fbc1ffae1e8b66255d78e8094e3e5ab1e6e384b0a590dba1d95d54830d99c6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896527757&rft_id=info:pmid/21852416&rft_jstor_id=41435701&rfr_iscdi=true