Loading…
Solid/liquid ratios of trace elements and radionuclides during a Nuclear Power Plant liquid discharge in the Seine River: Field measurements vs geochemical modeling
This study focuses on the determination of field solid/liquid ratios (Rd) values of trace element (TE) and radionuclide (RN) in the Seine River (France) during a concerted low radioactivity level liquid regulatory discharge performed by a Nuclear Power Plant (NPP) and their confrontation with Kd val...
Saved in:
Published in: | Journal of environmental radioactivity 2020-09, Vol.220-221, p.106317-106317, Article 106317 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study focuses on the determination of field solid/liquid ratios (Rd) values of trace element (TE) and radionuclide (RN) in the Seine River (France) during a concerted low radioactivity level liquid regulatory discharge performed by a Nuclear Power Plant (NPP) and their confrontation with Kd values calculated from geochemical modeling. This research focuses on how field Rd measurements of TE and RN can be representative of Kd values and how Kd models should be improved.
For this purpose 5 sampling points of the Seine River during a NPP's liquid discharge were investigated: upstream from the discharge in order to assess the natural background values in the area of effluent discharge, the total river water mixing distance (with transect sampling), and 2 points downstream from this last area. The main parameters required determining field Rd of TE and RN and their geochemical modeling (Kd) were acquired. Filtered waters were analyzed for alkalinity, anions, cations, dissolved organic carbon (DOC), TE, and RN concentrations. Suspended particulate matter (SPM) was analyzed for particulate organic carbon (POC), TE and RN concentrations and mineralogical composition. Field Rd and Kd values are in good agreement for stable Cd, Cu, Ni, Pb and Zn and for 7Be. Conversely, measured field Rd for stable Ag, Ba, Sr, Co and Cs are systematically higher than modeled Kd values. Even if only the lowest possible values were obtained for 137Cs and 60Co Rd measurements, these estimated limits are higher than calculated Kd for 137Cs and in good agreement for 60Co. Finally, only two RN exhibit field Rd lower than calculated Kd: 234Th and 210Pb.
Comparison of field Rd vs. modeled Kd values for TE and RN allows the identification, for each element, of the main involved adsorption phases and geochemical mechanisms controlling their fate and partitioning in river systems.
•This work focuses on how field solid/liquid ratios (Rd) of trace elements and radionuclides are representative of Kd values.•Field Rd measurements and modeled Kd values are in good agreement for stable Cd, Cu, Ni, Pb and Zn and for 7Be.•Comparison Rd vs. Kd allows the identification of geochemical mechanisms controlling their partitioning in river systems. |
---|---|
ISSN: | 0265-931X 1879-1700 |
DOI: | 10.1016/j.jenvrad.2020.106317 |