Loading…

Physicochemical, Functional, and Macromolecular Properties of Waxy Yam Starches Discovered from “Mapuey” (Dioscorea trifida) Genotypes in the Venezuelan Amazon

“Mapuey” tubers in Venezuela are staple food for indigenous peoples from the Caribbean coast and Amazon regions. Noticeable differences between genotypes of yam starches were observed. Granules were large, triangular, or shell-shaped with monomodal particle size distribution between 24.5 and 35.5 μm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2011-01, Vol.59 (1), p.263-273
Main Authors: Pérez, Elevina, Gibert, Olivier, Rolland-Sabaté, Agnès, Jiménez, Yarlezka, Sánchez, Teresa, Giraldo, Andrés, Pontoire, Bruno, Guilois, Sophie, Lahon, Marie-Christine, Reynes, Max, Dufour, Dominique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:“Mapuey” tubers in Venezuela are staple food for indigenous peoples from the Caribbean coast and Amazon regions. Noticeable differences between genotypes of yam starches were observed. Granules were large, triangular, or shell-shaped with monomodal particle size distribution between 24.5 and 35.5 μm. Differential scanning calorimetry (DSC) analyses revealed onset gelatinization temperatures from 69.1 to 73.4 °C with high gelatinization enthalpy changes from 22.4 to 25.3 J g−1. All X-ray diffractograms of starches exhibit B-type crystallinity. Crystallinity degrees varied from 24% to 40%. The highest crystallinity was found for the genotype having the highest amylose content. Iodo-colorimetric, amperometric, and DSC amylose determinations varied from 1.4 to 8.7%, 2.2 to 5.9%, and 1.4 to 3.5% for Amazonian genotypes, in comparison with commercial Mapuey starches: 12.0, 9.5, and 8.7%, respectively. Solubility and swelling power at 90 °C varied from 2.1 to 4.4% and 20.5 to 37.0%, respectively. Gel clarity fluctuated from 22.4 to 79.2%, and high rapid visco analyzer (RVA) viscosity was developed at 5% starch suspension (between 1430 and 2250 cP). Amylopectin weight average molar mass M̅ w, radius of gyration R G, hydrodynamic coefficient νG, and apparent molecular density d Gapp were determined using high-performance size exclusion chromatography (HPSEC) and asymmetrical flow field flow fractionation (A4F) techniques coupled with multiangle laser light scattering (MALLS) on the Dioscorea trifida genotypes exhibiting the lowest and highest amylose contents. Amylopectins showed very similar molecular conformations. M̅ w values were 1.15 × 108 and 9.06 × 107 g mol−1 using HPSEC and A4F, respectively, thus, 3−5 times lower than those reported with the same techniques for other yam species, and very close to those of potato and cassava amylopectins. This discovery of a new natural amylose-free starch in the neglected yam “Mapuey” could present some potential for the food industry.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf100418r