Loading…

Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote

Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flex...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2013-03, Vol.339 (6124), p.1207-1210
Main Authors: Schönknecht, Gerald, Chen, Wei-Hua, Ternes, Chad M., Barbier, Guillaume G., Shrestha, Roshan P., Stanke, Mario, Bräutigam, Andrea, Baker, Brett J., Banfield, Jillian F., Garavito, R. Michael, Carr, Kevin, Wilkerson, Curtis, Rensing, Stefan A., Gagneul, David, Dickenson, Nicholas E., Oesterhelt, Christine, Lercher, Martin J., Weber, Andreas P. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383
cites cdi_FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383
container_end_page 1210
container_issue 6124
container_start_page 1207
container_title Science (American Association for the Advancement of Science)
container_volume 339
creator Schönknecht, Gerald
Chen, Wei-Hua
Ternes, Chad M.
Barbier, Guillaume G.
Shrestha, Roshan P.
Stanke, Mario
Bräutigam, Andrea
Baker, Brett J.
Banfield, Jillian F.
Garavito, R. Michael
Carr, Kevin
Wilkerson, Curtis
Rensing, Stefan A.
Gagneul, David
Dickenson, Nicholas E.
Oesterhelt, Christine
Lercher, Martin J.
Weber, Andreas P. M.
description Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.
doi_str_mv 10.1126/science.1231707
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02651803v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23379966</jstor_id><sourcerecordid>23379966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383</originalsourceid><addsrcrecordid>eNpd0c1v0zAYBnALgVjZOHMCWeICh2x-4_jrWKbuQ6rEZTtxsFzntZqSxMVOJvjvcdUyoZ0s-f35sa2HkA_ALgFqeZV9h6PHS6g5KKZekQUwIypTM_6aLBjjstJMiTPyLucdY2Vm-FtyVvNGQcP0gvy4xRHpQ3JjDphoSHGg35yfMHWOurGly-S3Dh29cb7ru8lN2NLVU-znqYsjjaEguvo9JRzifluEp6v5p0t_4oQX5E1wfcb3p_WcPN6sHq7vqvX32_vr5bryooapMkI1om1FkMqoVkrBJdu0hoHzsjFaBw1KtUZqCUFxvzHoFCiNodEQHNf8nHw95m5db_epG8r1NrrO3i3X9rDHailAM_4ExX452n2Kv2bMkx267LHv3YhxzhaEAFlrKQ_08wu6i3May08scCiBAthBXR2VTzHnhOH5BcDsoSN76sieOionPp1y582A7bP_V0oBH49gl6eY_ptzZYyU_C8rH5U-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315185101</pqid></control><display><type>article</type><title>Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Schönknecht, Gerald ; Chen, Wei-Hua ; Ternes, Chad M. ; Barbier, Guillaume G. ; Shrestha, Roshan P. ; Stanke, Mario ; Bräutigam, Andrea ; Baker, Brett J. ; Banfield, Jillian F. ; Garavito, R. Michael ; Carr, Kevin ; Wilkerson, Curtis ; Rensing, Stefan A. ; Gagneul, David ; Dickenson, Nicholas E. ; Oesterhelt, Christine ; Lercher, Martin J. ; Weber, Andreas P. M.</creator><creatorcontrib>Schönknecht, Gerald ; Chen, Wei-Hua ; Ternes, Chad M. ; Barbier, Guillaume G. ; Shrestha, Roshan P. ; Stanke, Mario ; Bräutigam, Andrea ; Baker, Brett J. ; Banfield, Jillian F. ; Garavito, R. Michael ; Carr, Kevin ; Wilkerson, Curtis ; Rensing, Stefan A. ; Gagneul, David ; Dickenson, Nicholas E. ; Oesterhelt, Christine ; Lercher, Martin J. ; Weber, Andreas P. M.</creatorcontrib><description>Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1231707</identifier><identifier>PMID: 23471408</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adaptation, Physiological - genetics ; Adenosine triphosphatases ; Adenosine Triphosphatases - genetics ; Algae ; Archaea ; Archaea - classification ; Archaea - genetics ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Coding ; Cyanobacteria ; DNA, Algal ; Eukaryotes ; Eukaryotic cells ; Evolution ; Evolution, Molecular ; Extremophiles ; Galdieria sulphuraria ; Gene Transfer, Horizontal ; Genes, Archaeal ; Genes, Bacterial ; Genome, Plant - genetics ; Genomes ; Life Sciences ; Phylogeny ; Protein metabolism ; Proteins ; Rhodophyta - genetics ; Rhodophyta - microbiology ; Rhodophyta - physiology</subject><ispartof>Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6124), p.1207-1210</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383</citedby><cites>FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23379966$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23379966$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23471408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02651803$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schönknecht, Gerald</creatorcontrib><creatorcontrib>Chen, Wei-Hua</creatorcontrib><creatorcontrib>Ternes, Chad M.</creatorcontrib><creatorcontrib>Barbier, Guillaume G.</creatorcontrib><creatorcontrib>Shrestha, Roshan P.</creatorcontrib><creatorcontrib>Stanke, Mario</creatorcontrib><creatorcontrib>Bräutigam, Andrea</creatorcontrib><creatorcontrib>Baker, Brett J.</creatorcontrib><creatorcontrib>Banfield, Jillian F.</creatorcontrib><creatorcontrib>Garavito, R. Michael</creatorcontrib><creatorcontrib>Carr, Kevin</creatorcontrib><creatorcontrib>Wilkerson, Curtis</creatorcontrib><creatorcontrib>Rensing, Stefan A.</creatorcontrib><creatorcontrib>Gagneul, David</creatorcontrib><creatorcontrib>Dickenson, Nicholas E.</creatorcontrib><creatorcontrib>Oesterhelt, Christine</creatorcontrib><creatorcontrib>Lercher, Martin J.</creatorcontrib><creatorcontrib>Weber, Andreas P. M.</creatorcontrib><title>Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.</description><subject>Adaptation, Physiological - genetics</subject><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Algae</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Coding</subject><subject>Cyanobacteria</subject><subject>DNA, Algal</subject><subject>Eukaryotes</subject><subject>Eukaryotic cells</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Extremophiles</subject><subject>Galdieria sulphuraria</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes, Archaeal</subject><subject>Genes, Bacterial</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Phylogeny</subject><subject>Protein metabolism</subject><subject>Proteins</subject><subject>Rhodophyta - genetics</subject><subject>Rhodophyta - microbiology</subject><subject>Rhodophyta - physiology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0c1v0zAYBnALgVjZOHMCWeICh2x-4_jrWKbuQ6rEZTtxsFzntZqSxMVOJvjvcdUyoZ0s-f35sa2HkA_ALgFqeZV9h6PHS6g5KKZekQUwIypTM_6aLBjjstJMiTPyLucdY2Vm-FtyVvNGQcP0gvy4xRHpQ3JjDphoSHGg35yfMHWOurGly-S3Dh29cb7ru8lN2NLVU-znqYsjjaEguvo9JRzifluEp6v5p0t_4oQX5E1wfcb3p_WcPN6sHq7vqvX32_vr5bryooapMkI1om1FkMqoVkrBJdu0hoHzsjFaBw1KtUZqCUFxvzHoFCiNodEQHNf8nHw95m5db_epG8r1NrrO3i3X9rDHailAM_4ExX452n2Kv2bMkx267LHv3YhxzhaEAFlrKQ_08wu6i3May08scCiBAthBXR2VTzHnhOH5BcDsoSN76sieOionPp1y582A7bP_V0oBH49gl6eY_ptzZYyU_C8rH5U-</recordid><startdate>20130308</startdate><enddate>20130308</enddate><creator>Schönknecht, Gerald</creator><creator>Chen, Wei-Hua</creator><creator>Ternes, Chad M.</creator><creator>Barbier, Guillaume G.</creator><creator>Shrestha, Roshan P.</creator><creator>Stanke, Mario</creator><creator>Bräutigam, Andrea</creator><creator>Baker, Brett J.</creator><creator>Banfield, Jillian F.</creator><creator>Garavito, R. Michael</creator><creator>Carr, Kevin</creator><creator>Wilkerson, Curtis</creator><creator>Rensing, Stefan A.</creator><creator>Gagneul, David</creator><creator>Dickenson, Nicholas E.</creator><creator>Oesterhelt, Christine</creator><creator>Lercher, Martin J.</creator><creator>Weber, Andreas P. M.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope></search><sort><creationdate>20130308</creationdate><title>Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote</title><author>Schönknecht, Gerald ; Chen, Wei-Hua ; Ternes, Chad M. ; Barbier, Guillaume G. ; Shrestha, Roshan P. ; Stanke, Mario ; Bräutigam, Andrea ; Baker, Brett J. ; Banfield, Jillian F. ; Garavito, R. Michael ; Carr, Kevin ; Wilkerson, Curtis ; Rensing, Stefan A. ; Gagneul, David ; Dickenson, Nicholas E. ; Oesterhelt, Christine ; Lercher, Martin J. ; Weber, Andreas P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Algae</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Coding</topic><topic>Cyanobacteria</topic><topic>DNA, Algal</topic><topic>Eukaryotes</topic><topic>Eukaryotic cells</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Extremophiles</topic><topic>Galdieria sulphuraria</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes, Archaeal</topic><topic>Genes, Bacterial</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Phylogeny</topic><topic>Protein metabolism</topic><topic>Proteins</topic><topic>Rhodophyta - genetics</topic><topic>Rhodophyta - microbiology</topic><topic>Rhodophyta - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schönknecht, Gerald</creatorcontrib><creatorcontrib>Chen, Wei-Hua</creatorcontrib><creatorcontrib>Ternes, Chad M.</creatorcontrib><creatorcontrib>Barbier, Guillaume G.</creatorcontrib><creatorcontrib>Shrestha, Roshan P.</creatorcontrib><creatorcontrib>Stanke, Mario</creatorcontrib><creatorcontrib>Bräutigam, Andrea</creatorcontrib><creatorcontrib>Baker, Brett J.</creatorcontrib><creatorcontrib>Banfield, Jillian F.</creatorcontrib><creatorcontrib>Garavito, R. Michael</creatorcontrib><creatorcontrib>Carr, Kevin</creatorcontrib><creatorcontrib>Wilkerson, Curtis</creatorcontrib><creatorcontrib>Rensing, Stefan A.</creatorcontrib><creatorcontrib>Gagneul, David</creatorcontrib><creatorcontrib>Dickenson, Nicholas E.</creatorcontrib><creatorcontrib>Oesterhelt, Christine</creatorcontrib><creatorcontrib>Lercher, Martin J.</creatorcontrib><creatorcontrib>Weber, Andreas P. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schönknecht, Gerald</au><au>Chen, Wei-Hua</au><au>Ternes, Chad M.</au><au>Barbier, Guillaume G.</au><au>Shrestha, Roshan P.</au><au>Stanke, Mario</au><au>Bräutigam, Andrea</au><au>Baker, Brett J.</au><au>Banfield, Jillian F.</au><au>Garavito, R. Michael</au><au>Carr, Kevin</au><au>Wilkerson, Curtis</au><au>Rensing, Stefan A.</au><au>Gagneul, David</au><au>Dickenson, Nicholas E.</au><au>Oesterhelt, Christine</au><au>Lercher, Martin J.</au><au>Weber, Andreas P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-03-08</date><risdate>2013</risdate><volume>339</volume><issue>6124</issue><spage>1207</spage><epage>1210</epage><pages>1207-1210</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23471408</pmid><doi>10.1126/science.1231707</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6124), p.1207-1210
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_hal_02651803v1
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Adaptation, Physiological - genetics
Adenosine triphosphatases
Adenosine Triphosphatases - genetics
Algae
Archaea
Archaea - classification
Archaea - genetics
Bacteria
Bacteria - classification
Bacteria - genetics
Coding
Cyanobacteria
DNA, Algal
Eukaryotes
Eukaryotic cells
Evolution
Evolution, Molecular
Extremophiles
Galdieria sulphuraria
Gene Transfer, Horizontal
Genes, Archaeal
Genes, Bacterial
Genome, Plant - genetics
Genomes
Life Sciences
Phylogeny
Protein metabolism
Proteins
Rhodophyta - genetics
Rhodophyta - microbiology
Rhodophyta - physiology
title Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Transfer%20from%20Bacteria%20and%20Archaea%20Facilitated%20Evolution%20of%20an%20Extremophilic%20Eukaryote&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sch%C3%B6nknecht,%20Gerald&rft.date=2013-03-08&rft.volume=339&rft.issue=6124&rft.spage=1207&rft.epage=1210&rft.pages=1207-1210&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1231707&rft_dat=%3Cjstor_hal_p%3E23379966%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1315185101&rft_id=info:pmid/23471408&rft_jstor_id=23379966&rfr_iscdi=true