Loading…
Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote
Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flex...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2013-03, Vol.339 (6124), p.1207-1210 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383 |
container_end_page | 1210 |
container_issue | 6124 |
container_start_page | 1207 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 339 |
creator | Schönknecht, Gerald Chen, Wei-Hua Ternes, Chad M. Barbier, Guillaume G. Shrestha, Roshan P. Stanke, Mario Bräutigam, Andrea Baker, Brett J. Banfield, Jillian F. Garavito, R. Michael Carr, Kevin Wilkerson, Curtis Rensing, Stefan A. Gagneul, David Dickenson, Nicholas E. Oesterhelt, Christine Lercher, Martin J. Weber, Andreas P. M. |
description | Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote. |
doi_str_mv | 10.1126/science.1231707 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02651803v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23379966</jstor_id><sourcerecordid>23379966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383</originalsourceid><addsrcrecordid>eNpd0c1v0zAYBnALgVjZOHMCWeICh2x-4_jrWKbuQ6rEZTtxsFzntZqSxMVOJvjvcdUyoZ0s-f35sa2HkA_ALgFqeZV9h6PHS6g5KKZekQUwIypTM_6aLBjjstJMiTPyLucdY2Vm-FtyVvNGQcP0gvy4xRHpQ3JjDphoSHGg35yfMHWOurGly-S3Dh29cb7ru8lN2NLVU-znqYsjjaEguvo9JRzifluEp6v5p0t_4oQX5E1wfcb3p_WcPN6sHq7vqvX32_vr5bryooapMkI1om1FkMqoVkrBJdu0hoHzsjFaBw1KtUZqCUFxvzHoFCiNodEQHNf8nHw95m5db_epG8r1NrrO3i3X9rDHailAM_4ExX452n2Kv2bMkx267LHv3YhxzhaEAFlrKQ_08wu6i3May08scCiBAthBXR2VTzHnhOH5BcDsoSN76sieOionPp1y582A7bP_V0oBH49gl6eY_ptzZYyU_C8rH5U-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315185101</pqid></control><display><type>article</type><title>Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Schönknecht, Gerald ; Chen, Wei-Hua ; Ternes, Chad M. ; Barbier, Guillaume G. ; Shrestha, Roshan P. ; Stanke, Mario ; Bräutigam, Andrea ; Baker, Brett J. ; Banfield, Jillian F. ; Garavito, R. Michael ; Carr, Kevin ; Wilkerson, Curtis ; Rensing, Stefan A. ; Gagneul, David ; Dickenson, Nicholas E. ; Oesterhelt, Christine ; Lercher, Martin J. ; Weber, Andreas P. M.</creator><creatorcontrib>Schönknecht, Gerald ; Chen, Wei-Hua ; Ternes, Chad M. ; Barbier, Guillaume G. ; Shrestha, Roshan P. ; Stanke, Mario ; Bräutigam, Andrea ; Baker, Brett J. ; Banfield, Jillian F. ; Garavito, R. Michael ; Carr, Kevin ; Wilkerson, Curtis ; Rensing, Stefan A. ; Gagneul, David ; Dickenson, Nicholas E. ; Oesterhelt, Christine ; Lercher, Martin J. ; Weber, Andreas P. M.</creatorcontrib><description>Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1231707</identifier><identifier>PMID: 23471408</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adaptation, Physiological - genetics ; Adenosine triphosphatases ; Adenosine Triphosphatases - genetics ; Algae ; Archaea ; Archaea - classification ; Archaea - genetics ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Coding ; Cyanobacteria ; DNA, Algal ; Eukaryotes ; Eukaryotic cells ; Evolution ; Evolution, Molecular ; Extremophiles ; Galdieria sulphuraria ; Gene Transfer, Horizontal ; Genes, Archaeal ; Genes, Bacterial ; Genome, Plant - genetics ; Genomes ; Life Sciences ; Phylogeny ; Protein metabolism ; Proteins ; Rhodophyta - genetics ; Rhodophyta - microbiology ; Rhodophyta - physiology</subject><ispartof>Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6124), p.1207-1210</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383</citedby><cites>FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23379966$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23379966$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23471408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02651803$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schönknecht, Gerald</creatorcontrib><creatorcontrib>Chen, Wei-Hua</creatorcontrib><creatorcontrib>Ternes, Chad M.</creatorcontrib><creatorcontrib>Barbier, Guillaume G.</creatorcontrib><creatorcontrib>Shrestha, Roshan P.</creatorcontrib><creatorcontrib>Stanke, Mario</creatorcontrib><creatorcontrib>Bräutigam, Andrea</creatorcontrib><creatorcontrib>Baker, Brett J.</creatorcontrib><creatorcontrib>Banfield, Jillian F.</creatorcontrib><creatorcontrib>Garavito, R. Michael</creatorcontrib><creatorcontrib>Carr, Kevin</creatorcontrib><creatorcontrib>Wilkerson, Curtis</creatorcontrib><creatorcontrib>Rensing, Stefan A.</creatorcontrib><creatorcontrib>Gagneul, David</creatorcontrib><creatorcontrib>Dickenson, Nicholas E.</creatorcontrib><creatorcontrib>Oesterhelt, Christine</creatorcontrib><creatorcontrib>Lercher, Martin J.</creatorcontrib><creatorcontrib>Weber, Andreas P. M.</creatorcontrib><title>Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.</description><subject>Adaptation, Physiological - genetics</subject><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Algae</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Coding</subject><subject>Cyanobacteria</subject><subject>DNA, Algal</subject><subject>Eukaryotes</subject><subject>Eukaryotic cells</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Extremophiles</subject><subject>Galdieria sulphuraria</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes, Archaeal</subject><subject>Genes, Bacterial</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Phylogeny</subject><subject>Protein metabolism</subject><subject>Proteins</subject><subject>Rhodophyta - genetics</subject><subject>Rhodophyta - microbiology</subject><subject>Rhodophyta - physiology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0c1v0zAYBnALgVjZOHMCWeICh2x-4_jrWKbuQ6rEZTtxsFzntZqSxMVOJvjvcdUyoZ0s-f35sa2HkA_ALgFqeZV9h6PHS6g5KKZekQUwIypTM_6aLBjjstJMiTPyLucdY2Vm-FtyVvNGQcP0gvy4xRHpQ3JjDphoSHGg35yfMHWOurGly-S3Dh29cb7ru8lN2NLVU-znqYsjjaEguvo9JRzifluEp6v5p0t_4oQX5E1wfcb3p_WcPN6sHq7vqvX32_vr5bryooapMkI1om1FkMqoVkrBJdu0hoHzsjFaBw1KtUZqCUFxvzHoFCiNodEQHNf8nHw95m5db_epG8r1NrrO3i3X9rDHailAM_4ExX452n2Kv2bMkx267LHv3YhxzhaEAFlrKQ_08wu6i3May08scCiBAthBXR2VTzHnhOH5BcDsoSN76sieOionPp1y582A7bP_V0oBH49gl6eY_ptzZYyU_C8rH5U-</recordid><startdate>20130308</startdate><enddate>20130308</enddate><creator>Schönknecht, Gerald</creator><creator>Chen, Wei-Hua</creator><creator>Ternes, Chad M.</creator><creator>Barbier, Guillaume G.</creator><creator>Shrestha, Roshan P.</creator><creator>Stanke, Mario</creator><creator>Bräutigam, Andrea</creator><creator>Baker, Brett J.</creator><creator>Banfield, Jillian F.</creator><creator>Garavito, R. Michael</creator><creator>Carr, Kevin</creator><creator>Wilkerson, Curtis</creator><creator>Rensing, Stefan A.</creator><creator>Gagneul, David</creator><creator>Dickenson, Nicholas E.</creator><creator>Oesterhelt, Christine</creator><creator>Lercher, Martin J.</creator><creator>Weber, Andreas P. M.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope></search><sort><creationdate>20130308</creationdate><title>Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote</title><author>Schönknecht, Gerald ; Chen, Wei-Hua ; Ternes, Chad M. ; Barbier, Guillaume G. ; Shrestha, Roshan P. ; Stanke, Mario ; Bräutigam, Andrea ; Baker, Brett J. ; Banfield, Jillian F. ; Garavito, R. Michael ; Carr, Kevin ; Wilkerson, Curtis ; Rensing, Stefan A. ; Gagneul, David ; Dickenson, Nicholas E. ; Oesterhelt, Christine ; Lercher, Martin J. ; Weber, Andreas P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Algae</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Coding</topic><topic>Cyanobacteria</topic><topic>DNA, Algal</topic><topic>Eukaryotes</topic><topic>Eukaryotic cells</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Extremophiles</topic><topic>Galdieria sulphuraria</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes, Archaeal</topic><topic>Genes, Bacterial</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Phylogeny</topic><topic>Protein metabolism</topic><topic>Proteins</topic><topic>Rhodophyta - genetics</topic><topic>Rhodophyta - microbiology</topic><topic>Rhodophyta - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schönknecht, Gerald</creatorcontrib><creatorcontrib>Chen, Wei-Hua</creatorcontrib><creatorcontrib>Ternes, Chad M.</creatorcontrib><creatorcontrib>Barbier, Guillaume G.</creatorcontrib><creatorcontrib>Shrestha, Roshan P.</creatorcontrib><creatorcontrib>Stanke, Mario</creatorcontrib><creatorcontrib>Bräutigam, Andrea</creatorcontrib><creatorcontrib>Baker, Brett J.</creatorcontrib><creatorcontrib>Banfield, Jillian F.</creatorcontrib><creatorcontrib>Garavito, R. Michael</creatorcontrib><creatorcontrib>Carr, Kevin</creatorcontrib><creatorcontrib>Wilkerson, Curtis</creatorcontrib><creatorcontrib>Rensing, Stefan A.</creatorcontrib><creatorcontrib>Gagneul, David</creatorcontrib><creatorcontrib>Dickenson, Nicholas E.</creatorcontrib><creatorcontrib>Oesterhelt, Christine</creatorcontrib><creatorcontrib>Lercher, Martin J.</creatorcontrib><creatorcontrib>Weber, Andreas P. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schönknecht, Gerald</au><au>Chen, Wei-Hua</au><au>Ternes, Chad M.</au><au>Barbier, Guillaume G.</au><au>Shrestha, Roshan P.</au><au>Stanke, Mario</au><au>Bräutigam, Andrea</au><au>Baker, Brett J.</au><au>Banfield, Jillian F.</au><au>Garavito, R. Michael</au><au>Carr, Kevin</au><au>Wilkerson, Curtis</au><au>Rensing, Stefan A.</au><au>Gagneul, David</au><au>Dickenson, Nicholas E.</au><au>Oesterhelt, Christine</au><au>Lercher, Martin J.</au><au>Weber, Andreas P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-03-08</date><risdate>2013</risdate><volume>339</volume><issue>6124</issue><spage>1207</spage><epage>1210</epage><pages>1207-1210</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23471408</pmid><doi>10.1126/science.1231707</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6124), p.1207-1210 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02651803v1 |
source | American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Adaptation, Physiological - genetics Adenosine triphosphatases Adenosine Triphosphatases - genetics Algae Archaea Archaea - classification Archaea - genetics Bacteria Bacteria - classification Bacteria - genetics Coding Cyanobacteria DNA, Algal Eukaryotes Eukaryotic cells Evolution Evolution, Molecular Extremophiles Galdieria sulphuraria Gene Transfer, Horizontal Genes, Archaeal Genes, Bacterial Genome, Plant - genetics Genomes Life Sciences Phylogeny Protein metabolism Proteins Rhodophyta - genetics Rhodophyta - microbiology Rhodophyta - physiology |
title | Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Transfer%20from%20Bacteria%20and%20Archaea%20Facilitated%20Evolution%20of%20an%20Extremophilic%20Eukaryote&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sch%C3%B6nknecht,%20Gerald&rft.date=2013-03-08&rft.volume=339&rft.issue=6124&rft.spage=1207&rft.epage=1210&rft.pages=1207-1210&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1231707&rft_dat=%3Cjstor_hal_p%3E23379966%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-95745dd5f6797d665360bd901ac64988f8177d96861f73cb9ea7178ef481fa383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1315185101&rft_id=info:pmid/23471408&rft_jstor_id=23379966&rfr_iscdi=true |