Loading…
Delayed sexual maturation through gonadotropin receptor vaccination in the rainbow trout Oncorhynchus mykiss
Abstract In fish, gonadotropin hormones FSH-GTH1 and LH-GTH2 are less specific for their cognate receptors than in mammals. The respective reproductive functions of fish LH and FSH are thus difficult to establish. We aimed to study the effect of specific antagonists of the two gonadotropin receptors...
Saved in:
Published in: | General and comparative endocrinology 2009-11, Vol.164 (2), p.107-116 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract In fish, gonadotropin hormones FSH-GTH1 and LH-GTH2 are less specific for their cognate receptors than in mammals. The respective reproductive functions of fish LH and FSH are thus difficult to establish. We aimed to study the effect of specific antagonists of the two gonadotropin receptors on trout sexual maturation in both sexes by targeting specific regions of LH and FSH receptors, Lhr and Fshr. Filamentous phages displaying Lhr specific or Fshr specific decapeptides from the extracellular hormone binding domain were engineered. Recombinant phages were used as receptor-specific antagonistic vaccines. Male and female trouts were immunized with anti-LHR, anti-FSHR, anti-FSHR + LHR or adjuvant alone, through multiple injections over 8–24 weeks, starting at different stages of sexual maturation. The consequences of immunization on gonadal development were evaluated by determining gonad growth, by histological analysis of testis and ovaries at the end of the vaccination period and by measuring blood plasma sex steroids using radioimmunoassay. We show for the first time in fish that the anti-receptor vaccinations could have specific antagonistic effects on the development of the reproductive functions; while the anti-FSHR affected the sexual maturation of prepubertal males and delayed sperm production, the anti-LHR blocked vitellogenesis in females. In maturing males, the combined anti-FSHR + LHR vaccine inhibited spermatogenesis and affected steroidogenesis. In that case, the effects of the vaccine on spermatogenesis were transient and reversible when immunization was stopped. Such an immunological strategy to specifically and transiently inhibit a receptor provides a promising approach for discovering their specific functions; it could also lead to a new technology for controlling the onset of puberty in aquaculture species. |
---|---|
ISSN: | 0016-6480 1095-6840 |
DOI: | 10.1016/j.ygcen.2009.05.012 |