Loading…
Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements
The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot ( Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, C...
Saved in:
Published in: | Agricultural and forest meteorology 2010-02, Vol.150 (2), p.276-286 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93 |
---|---|
cites | |
container_end_page | 286 |
container_issue | 2 |
container_start_page | 276 |
container_title | Agricultural and forest meteorology |
container_volume | 150 |
creator | Ortega-Farias, S. Poblete-Echeverría, C. Brisson, N. |
description | The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot (
Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, Chile (35°25′ LS; 71°32′ LW; 125
m a.s.l). The performance of the SW model was evaluated using the eddy-covariance method on a 30
min time interval. Also, sub-models to estimate net radiation (Rn) and soil heat flux (
G) were used in the SW model. A good agreement between observed and estimated values of Rn was found with a root mean square error (RMSE) of 33
W
m
−2 and a mean absolute error (MAE) of 24
W
m
−2. Also, the SW model was able to estimate latent heat flux with RMSE and MAE of 34 and 21
W
m
−2, respectively. On a daily basis, results indicate that the SW model was able to predict the ETv with RMSE and MAE values of 0.51 and 0.41
mm
d
−1, respectively. These results suggest that it is possible to directly estimate ETv over unstressed grapevines using meteorological data and soil moisture measurements. |
doi_str_mv | 10.1016/j.agrformet.2009.11.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02667935v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168192309002779</els_id><sourcerecordid>1677986445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93</originalsourceid><addsrcrecordid>eNqFkU-P0zAQxSMEEmXhM2wuCDikeOzETo7VamGRKoEEe7amzqS4SuJip0Xl0zNRVj3CyX_0e8_j97LsFsQaBOiPhzXuYxfiQNNaCtGsAdYC5LNsBbVRhZSleJ6tmKwLaKR6mb1K6SCYMKZZZfEbRmQpRf8HJx_GPHQ55tPvUPR4oZgPoaU-Z_-c0uQHZsZ9fvYjXTC2OZ3xGKaIYzr6uOhPaSZmyxBDH_beYc9HTKdIA41Tep296LBP9OZpvckeP93_uHsotl8_f7nbbAtX6noqHFIlZSUIBBotK1OLHe5ag6UyoHa8c9QhaWlEo6u6gm4nlOrmO9VIatRN9mHx_Ym9PUaePV5sQG8fNls73wmptWlUdQZm3y3sMYZfJ_6pHXxy1Pc4Ujgla8pSg5JCMvn-nyRozrXWZVkxahbUxZBSpO46BQg7d2cP9tqdnbuzAJabYeXbp0cwcXwdB-x8usqlVE1ZCcHc7cJ1GGYrZh6_SwFKgGm0qWomNgtBnPTZU7TJeRodtT6Sm2wb_H-n-Qu0Jr-C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677986445</pqid></control><display><type>article</type><title>Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements</title><source>ScienceDirect Journals</source><creator>Ortega-Farias, S. ; Poblete-Echeverría, C. ; Brisson, N.</creator><creatorcontrib>Ortega-Farias, S. ; Poblete-Echeverría, C. ; Brisson, N.</creatorcontrib><description>The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot (
Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, Chile (35°25′ LS; 71°32′ LW; 125
m a.s.l). The performance of the SW model was evaluated using the eddy-covariance method on a 30
min time interval. Also, sub-models to estimate net radiation (Rn) and soil heat flux (
G) were used in the SW model. A good agreement between observed and estimated values of Rn was found with a root mean square error (RMSE) of 33
W
m
−2 and a mean absolute error (MAE) of 24
W
m
−2. Also, the SW model was able to estimate latent heat flux with RMSE and MAE of 34 and 21
W
m
−2, respectively. On a daily basis, results indicate that the SW model was able to predict the ETv with RMSE and MAE values of 0.51 and 0.41
mm
d
−1, respectively. These results suggest that it is possible to directly estimate ETv over unstressed grapevines using meteorological data and soil moisture measurements.</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/j.agrformet.2009.11.012</identifier><identifier>CODEN: AFMEEB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agricultural and forest meteorology ; Agricultural sciences ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Canopy resistance ; eddy covariance method ; Energy balance ; Errors ; Estimates ; Estimating ; estimation ; Evapotranspiration ; fruit crops ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; grapes ; heat transfer ; latent heat ; Life Sciences ; Mathematical models ; meteorological parameters ; microirrigation ; model validation ; Parametrization ; Shuttleworth and Wallace model ; Silviculture, forestry ; soil temperature ; soil water content ; solar radiation ; Valleys ; Vine ; Vineyards ; Vitaceae ; Vitis vinifera ; Water balance and requirements. Evapotranspiration</subject><ispartof>Agricultural and forest meteorology, 2010-02, Vol.150 (2), p.276-286</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22394500$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02667935$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortega-Farias, S.</creatorcontrib><creatorcontrib>Poblete-Echeverría, C.</creatorcontrib><creatorcontrib>Brisson, N.</creatorcontrib><title>Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements</title><title>Agricultural and forest meteorology</title><description>The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot (
Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, Chile (35°25′ LS; 71°32′ LW; 125
m a.s.l). The performance of the SW model was evaluated using the eddy-covariance method on a 30
min time interval. Also, sub-models to estimate net radiation (Rn) and soil heat flux (
G) were used in the SW model. A good agreement between observed and estimated values of Rn was found with a root mean square error (RMSE) of 33
W
m
−2 and a mean absolute error (MAE) of 24
W
m
−2. Also, the SW model was able to estimate latent heat flux with RMSE and MAE of 34 and 21
W
m
−2, respectively. On a daily basis, results indicate that the SW model was able to predict the ETv with RMSE and MAE values of 0.51 and 0.41
mm
d
−1, respectively. These results suggest that it is possible to directly estimate ETv over unstressed grapevines using meteorological data and soil moisture measurements.</description><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agricultural and forest meteorology</subject><subject>Agricultural sciences</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Canopy resistance</subject><subject>eddy covariance method</subject><subject>Energy balance</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimating</subject><subject>estimation</subject><subject>Evapotranspiration</subject><subject>fruit crops</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>grapes</subject><subject>heat transfer</subject><subject>latent heat</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>meteorological parameters</subject><subject>microirrigation</subject><subject>model validation</subject><subject>Parametrization</subject><subject>Shuttleworth and Wallace model</subject><subject>Silviculture, forestry</subject><subject>soil temperature</subject><subject>soil water content</subject><subject>solar radiation</subject><subject>Valleys</subject><subject>Vine</subject><subject>Vineyards</subject><subject>Vitaceae</subject><subject>Vitis vinifera</subject><subject>Water balance and requirements. Evapotranspiration</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU-P0zAQxSMEEmXhM2wuCDikeOzETo7VamGRKoEEe7amzqS4SuJip0Xl0zNRVj3CyX_0e8_j97LsFsQaBOiPhzXuYxfiQNNaCtGsAdYC5LNsBbVRhZSleJ6tmKwLaKR6mb1K6SCYMKZZZfEbRmQpRf8HJx_GPHQ55tPvUPR4oZgPoaU-Z_-c0uQHZsZ9fvYjXTC2OZ3xGKaIYzr6uOhPaSZmyxBDH_beYc9HTKdIA41Tep296LBP9OZpvckeP93_uHsotl8_f7nbbAtX6noqHFIlZSUIBBotK1OLHe5ag6UyoHa8c9QhaWlEo6u6gm4nlOrmO9VIatRN9mHx_Ym9PUaePV5sQG8fNls73wmptWlUdQZm3y3sMYZfJ_6pHXxy1Pc4Ujgla8pSg5JCMvn-nyRozrXWZVkxahbUxZBSpO46BQg7d2cP9tqdnbuzAJabYeXbp0cwcXwdB-x8usqlVE1ZCcHc7cJ1GGYrZh6_SwFKgGm0qWomNgtBnPTZU7TJeRodtT6Sm2wb_H-n-Qu0Jr-C</recordid><startdate>20100215</startdate><enddate>20100215</enddate><creator>Ortega-Farias, S.</creator><creator>Poblete-Echeverría, C.</creator><creator>Brisson, N.</creator><general>Elsevier B.V</general><general>[Oxford]: Elsevier Science Ltd</general><general>Elsevier</general><general>Elsevier Masson</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope><scope>SOI</scope><scope>1XC</scope></search><sort><creationdate>20100215</creationdate><title>Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements</title><author>Ortega-Farias, S. ; Poblete-Echeverría, C. ; Brisson, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agricultural and forest meteorology</topic><topic>Agricultural sciences</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Canopy resistance</topic><topic>eddy covariance method</topic><topic>Energy balance</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimating</topic><topic>estimation</topic><topic>Evapotranspiration</topic><topic>fruit crops</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>grapes</topic><topic>heat transfer</topic><topic>latent heat</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>meteorological parameters</topic><topic>microirrigation</topic><topic>model validation</topic><topic>Parametrization</topic><topic>Shuttleworth and Wallace model</topic><topic>Silviculture, forestry</topic><topic>soil temperature</topic><topic>soil water content</topic><topic>solar radiation</topic><topic>Valleys</topic><topic>Vine</topic><topic>Vineyards</topic><topic>Vitaceae</topic><topic>Vitis vinifera</topic><topic>Water balance and requirements. Evapotranspiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega-Farias, S.</creatorcontrib><creatorcontrib>Poblete-Echeverría, C.</creatorcontrib><creatorcontrib>Brisson, N.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega-Farias, S.</au><au>Poblete-Echeverría, C.</au><au>Brisson, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>2010-02-15</date><risdate>2010</risdate><volume>150</volume><issue>2</issue><spage>276</spage><epage>286</epage><pages>276-286</pages><issn>0168-1923</issn><eissn>1873-2240</eissn><coden>AFMEEB</coden><abstract>The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot (
Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, Chile (35°25′ LS; 71°32′ LW; 125
m a.s.l). The performance of the SW model was evaluated using the eddy-covariance method on a 30
min time interval. Also, sub-models to estimate net radiation (Rn) and soil heat flux (
G) were used in the SW model. A good agreement between observed and estimated values of Rn was found with a root mean square error (RMSE) of 33
W
m
−2 and a mean absolute error (MAE) of 24
W
m
−2. Also, the SW model was able to estimate latent heat flux with RMSE and MAE of 34 and 21
W
m
−2, respectively. On a daily basis, results indicate that the SW model was able to predict the ETv with RMSE and MAE values of 0.51 and 0.41
mm
d
−1, respectively. These results suggest that it is possible to directly estimate ETv over unstressed grapevines using meteorological data and soil moisture measurements.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.agrformet.2009.11.012</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1923 |
ispartof | Agricultural and forest meteorology, 2010-02, Vol.150 (2), p.276-286 |
issn | 0168-1923 1873-2240 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02667935v1 |
source | ScienceDirect Journals |
subjects | Agricultural and forest climatology and meteorology. Irrigation. Drainage Agricultural and forest meteorology Agricultural sciences Agronomy. Soil science and plant productions Biological and medical sciences Canopy resistance eddy covariance method Energy balance Errors Estimates Estimating estimation Evapotranspiration fruit crops Fundamental and applied biological sciences. Psychology General agronomy. Plant production grapes heat transfer latent heat Life Sciences Mathematical models meteorological parameters microirrigation model validation Parametrization Shuttleworth and Wallace model Silviculture, forestry soil temperature soil water content solar radiation Valleys Vine Vineyards Vitaceae Vitis vinifera Water balance and requirements. Evapotranspiration |
title | Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterization%20of%20a%20two-layer%20model%20for%20estimating%20vineyard%20evapotranspiration%20using%20meteorological%20measurements&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Ortega-Farias,%20S.&rft.date=2010-02-15&rft.volume=150&rft.issue=2&rft.spage=276&rft.epage=286&rft.pages=276-286&rft.issn=0168-1923&rft.eissn=1873-2240&rft.coden=AFMEEB&rft_id=info:doi/10.1016/j.agrformet.2009.11.012&rft_dat=%3Cproquest_hal_p%3E1677986445%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1677986445&rft_id=info:pmid/&rfr_iscdi=true |