Loading…

Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements

The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot ( Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, C...

Full description

Saved in:
Bibliographic Details
Published in:Agricultural and forest meteorology 2010-02, Vol.150 (2), p.276-286
Main Authors: Ortega-Farias, S., Poblete-Echeverría, C., Brisson, N.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93
cites
container_end_page 286
container_issue 2
container_start_page 276
container_title Agricultural and forest meteorology
container_volume 150
creator Ortega-Farias, S.
Poblete-Echeverría, C.
Brisson, N.
description The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot ( Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, Chile (35°25′ LS; 71°32′ LW; 125 m a.s.l). The performance of the SW model was evaluated using the eddy-covariance method on a 30 min time interval. Also, sub-models to estimate net radiation (Rn) and soil heat flux ( G) were used in the SW model. A good agreement between observed and estimated values of Rn was found with a root mean square error (RMSE) of 33 W m −2 and a mean absolute error (MAE) of 24 W m −2. Also, the SW model was able to estimate latent heat flux with RMSE and MAE of 34 and 21 W m −2, respectively. On a daily basis, results indicate that the SW model was able to predict the ETv with RMSE and MAE values of 0.51 and 0.41 mm d −1, respectively. These results suggest that it is possible to directly estimate ETv over unstressed grapevines using meteorological data and soil moisture measurements.
doi_str_mv 10.1016/j.agrformet.2009.11.012
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02667935v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168192309002779</els_id><sourcerecordid>1677986445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93</originalsourceid><addsrcrecordid>eNqFkU-P0zAQxSMEEmXhM2wuCDikeOzETo7VamGRKoEEe7amzqS4SuJip0Xl0zNRVj3CyX_0e8_j97LsFsQaBOiPhzXuYxfiQNNaCtGsAdYC5LNsBbVRhZSleJ6tmKwLaKR6mb1K6SCYMKZZZfEbRmQpRf8HJx_GPHQ55tPvUPR4oZgPoaU-Z_-c0uQHZsZ9fvYjXTC2OZ3xGKaIYzr6uOhPaSZmyxBDH_beYc9HTKdIA41Tep296LBP9OZpvckeP93_uHsotl8_f7nbbAtX6noqHFIlZSUIBBotK1OLHe5ag6UyoHa8c9QhaWlEo6u6gm4nlOrmO9VIatRN9mHx_Ym9PUaePV5sQG8fNls73wmptWlUdQZm3y3sMYZfJ_6pHXxy1Pc4Ujgla8pSg5JCMvn-nyRozrXWZVkxahbUxZBSpO46BQg7d2cP9tqdnbuzAJabYeXbp0cwcXwdB-x8usqlVE1ZCcHc7cJ1GGYrZh6_SwFKgGm0qWomNgtBnPTZU7TJeRodtT6Sm2wb_H-n-Qu0Jr-C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677986445</pqid></control><display><type>article</type><title>Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements</title><source>ScienceDirect Journals</source><creator>Ortega-Farias, S. ; Poblete-Echeverría, C. ; Brisson, N.</creator><creatorcontrib>Ortega-Farias, S. ; Poblete-Echeverría, C. ; Brisson, N.</creatorcontrib><description>The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot ( Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, Chile (35°25′ LS; 71°32′ LW; 125 m a.s.l). The performance of the SW model was evaluated using the eddy-covariance method on a 30 min time interval. Also, sub-models to estimate net radiation (Rn) and soil heat flux ( G) were used in the SW model. A good agreement between observed and estimated values of Rn was found with a root mean square error (RMSE) of 33 W m −2 and a mean absolute error (MAE) of 24 W m −2. Also, the SW model was able to estimate latent heat flux with RMSE and MAE of 34 and 21 W m −2, respectively. On a daily basis, results indicate that the SW model was able to predict the ETv with RMSE and MAE values of 0.51 and 0.41 mm d −1, respectively. These results suggest that it is possible to directly estimate ETv over unstressed grapevines using meteorological data and soil moisture measurements.</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/j.agrformet.2009.11.012</identifier><identifier>CODEN: AFMEEB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agricultural and forest meteorology ; Agricultural sciences ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Canopy resistance ; eddy covariance method ; Energy balance ; Errors ; Estimates ; Estimating ; estimation ; Evapotranspiration ; fruit crops ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; grapes ; heat transfer ; latent heat ; Life Sciences ; Mathematical models ; meteorological parameters ; microirrigation ; model validation ; Parametrization ; Shuttleworth and Wallace model ; Silviculture, forestry ; soil temperature ; soil water content ; solar radiation ; Valleys ; Vine ; Vineyards ; Vitaceae ; Vitis vinifera ; Water balance and requirements. Evapotranspiration</subject><ispartof>Agricultural and forest meteorology, 2010-02, Vol.150 (2), p.276-286</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22394500$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02667935$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortega-Farias, S.</creatorcontrib><creatorcontrib>Poblete-Echeverría, C.</creatorcontrib><creatorcontrib>Brisson, N.</creatorcontrib><title>Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements</title><title>Agricultural and forest meteorology</title><description>The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot ( Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, Chile (35°25′ LS; 71°32′ LW; 125 m a.s.l). The performance of the SW model was evaluated using the eddy-covariance method on a 30 min time interval. Also, sub-models to estimate net radiation (Rn) and soil heat flux ( G) were used in the SW model. A good agreement between observed and estimated values of Rn was found with a root mean square error (RMSE) of 33 W m −2 and a mean absolute error (MAE) of 24 W m −2. Also, the SW model was able to estimate latent heat flux with RMSE and MAE of 34 and 21 W m −2, respectively. On a daily basis, results indicate that the SW model was able to predict the ETv with RMSE and MAE values of 0.51 and 0.41 mm d −1, respectively. These results suggest that it is possible to directly estimate ETv over unstressed grapevines using meteorological data and soil moisture measurements.</description><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agricultural and forest meteorology</subject><subject>Agricultural sciences</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Canopy resistance</subject><subject>eddy covariance method</subject><subject>Energy balance</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimating</subject><subject>estimation</subject><subject>Evapotranspiration</subject><subject>fruit crops</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>grapes</subject><subject>heat transfer</subject><subject>latent heat</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>meteorological parameters</subject><subject>microirrigation</subject><subject>model validation</subject><subject>Parametrization</subject><subject>Shuttleworth and Wallace model</subject><subject>Silviculture, forestry</subject><subject>soil temperature</subject><subject>soil water content</subject><subject>solar radiation</subject><subject>Valleys</subject><subject>Vine</subject><subject>Vineyards</subject><subject>Vitaceae</subject><subject>Vitis vinifera</subject><subject>Water balance and requirements. Evapotranspiration</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU-P0zAQxSMEEmXhM2wuCDikeOzETo7VamGRKoEEe7amzqS4SuJip0Xl0zNRVj3CyX_0e8_j97LsFsQaBOiPhzXuYxfiQNNaCtGsAdYC5LNsBbVRhZSleJ6tmKwLaKR6mb1K6SCYMKZZZfEbRmQpRf8HJx_GPHQ55tPvUPR4oZgPoaU-Z_-c0uQHZsZ9fvYjXTC2OZ3xGKaIYzr6uOhPaSZmyxBDH_beYc9HTKdIA41Tep296LBP9OZpvckeP93_uHsotl8_f7nbbAtX6noqHFIlZSUIBBotK1OLHe5ag6UyoHa8c9QhaWlEo6u6gm4nlOrmO9VIatRN9mHx_Ym9PUaePV5sQG8fNls73wmptWlUdQZm3y3sMYZfJ_6pHXxy1Pc4Ujgla8pSg5JCMvn-nyRozrXWZVkxahbUxZBSpO46BQg7d2cP9tqdnbuzAJabYeXbp0cwcXwdB-x8usqlVE1ZCcHc7cJ1GGYrZh6_SwFKgGm0qWomNgtBnPTZU7TJeRodtT6Sm2wb_H-n-Qu0Jr-C</recordid><startdate>20100215</startdate><enddate>20100215</enddate><creator>Ortega-Farias, S.</creator><creator>Poblete-Echeverría, C.</creator><creator>Brisson, N.</creator><general>Elsevier B.V</general><general>[Oxford]: Elsevier Science Ltd</general><general>Elsevier</general><general>Elsevier Masson</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope><scope>SOI</scope><scope>1XC</scope></search><sort><creationdate>20100215</creationdate><title>Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements</title><author>Ortega-Farias, S. ; Poblete-Echeverría, C. ; Brisson, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agricultural and forest meteorology</topic><topic>Agricultural sciences</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Canopy resistance</topic><topic>eddy covariance method</topic><topic>Energy balance</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimating</topic><topic>estimation</topic><topic>Evapotranspiration</topic><topic>fruit crops</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>grapes</topic><topic>heat transfer</topic><topic>latent heat</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>meteorological parameters</topic><topic>microirrigation</topic><topic>model validation</topic><topic>Parametrization</topic><topic>Shuttleworth and Wallace model</topic><topic>Silviculture, forestry</topic><topic>soil temperature</topic><topic>soil water content</topic><topic>solar radiation</topic><topic>Valleys</topic><topic>Vine</topic><topic>Vineyards</topic><topic>Vitaceae</topic><topic>Vitis vinifera</topic><topic>Water balance and requirements. Evapotranspiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega-Farias, S.</creatorcontrib><creatorcontrib>Poblete-Echeverría, C.</creatorcontrib><creatorcontrib>Brisson, N.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega-Farias, S.</au><au>Poblete-Echeverría, C.</au><au>Brisson, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>2010-02-15</date><risdate>2010</risdate><volume>150</volume><issue>2</issue><spage>276</spage><epage>286</epage><pages>276-286</pages><issn>0168-1923</issn><eissn>1873-2240</eissn><coden>AFMEEB</coden><abstract>The Shuttleworth and Wallace (SW) model with variable canopy resistance was evaluated to estimate evapotranspiration (ETv) from a drip-irrigated Merlot ( Vitis vinifera L.) vineyard trained on a vertical shoot-positioned (VSP) system. This vineyard is located in the Talca Valley, Region del Maule, Chile (35°25′ LS; 71°32′ LW; 125 m a.s.l). The performance of the SW model was evaluated using the eddy-covariance method on a 30 min time interval. Also, sub-models to estimate net radiation (Rn) and soil heat flux ( G) were used in the SW model. A good agreement between observed and estimated values of Rn was found with a root mean square error (RMSE) of 33 W m −2 and a mean absolute error (MAE) of 24 W m −2. Also, the SW model was able to estimate latent heat flux with RMSE and MAE of 34 and 21 W m −2, respectively. On a daily basis, results indicate that the SW model was able to predict the ETv with RMSE and MAE values of 0.51 and 0.41 mm d −1, respectively. These results suggest that it is possible to directly estimate ETv over unstressed grapevines using meteorological data and soil moisture measurements.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.agrformet.2009.11.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1923
ispartof Agricultural and forest meteorology, 2010-02, Vol.150 (2), p.276-286
issn 0168-1923
1873-2240
language eng
recordid cdi_hal_primary_oai_HAL_hal_02667935v1
source ScienceDirect Journals
subjects Agricultural and forest climatology and meteorology. Irrigation. Drainage
Agricultural and forest meteorology
Agricultural sciences
Agronomy. Soil science and plant productions
Biological and medical sciences
Canopy resistance
eddy covariance method
Energy balance
Errors
Estimates
Estimating
estimation
Evapotranspiration
fruit crops
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
grapes
heat transfer
latent heat
Life Sciences
Mathematical models
meteorological parameters
microirrigation
model validation
Parametrization
Shuttleworth and Wallace model
Silviculture, forestry
soil temperature
soil water content
solar radiation
Valleys
Vine
Vineyards
Vitaceae
Vitis vinifera
Water balance and requirements. Evapotranspiration
title Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterization%20of%20a%20two-layer%20model%20for%20estimating%20vineyard%20evapotranspiration%20using%20meteorological%20measurements&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Ortega-Farias,%20S.&rft.date=2010-02-15&rft.volume=150&rft.issue=2&rft.spage=276&rft.epage=286&rft.pages=276-286&rft.issn=0168-1923&rft.eissn=1873-2240&rft.coden=AFMEEB&rft_id=info:doi/10.1016/j.agrformet.2009.11.012&rft_dat=%3Cproquest_hal_p%3E1677986445%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-cae52250e10a7625780babd7a43713bbd7cefae6270965851fb033fefae392e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1677986445&rft_id=info:pmid/&rfr_iscdi=true