Loading…

Silicon transfers in a rice field in Camargue (France)

We conducted a study of the biogeochemical cycle of silicon in a rice field in Camargue (France) in order to evaluate the role of biogenic silicon particles (BSi) in the cycle. Opal-A biogenic particles (phytoliths, diatoms…), which dissolve more rapidly than other forms of silicate usually present...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geochemical exploration 2006-01, Vol.88 (1), p.190-193
Main Authors: Desplanques, V., Cary, L., Mouret, J.-C., Trolard, F., Bourrié, G., Grauby, O., Meunier, J.-D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a394t-866a531706bb582347c5148eb85ed3c502de1f3c715bae121fd7875015a9f3f93
cites cdi_FETCH-LOGICAL-a394t-866a531706bb582347c5148eb85ed3c502de1f3c715bae121fd7875015a9f3f93
container_end_page 193
container_issue 1
container_start_page 190
container_title Journal of geochemical exploration
container_volume 88
creator Desplanques, V.
Cary, L.
Mouret, J.-C.
Trolard, F.
Bourrié, G.
Grauby, O.
Meunier, J.-D.
description We conducted a study of the biogeochemical cycle of silicon in a rice field in Camargue (France) in order to evaluate the role of biogenic silicon particles (BSi) in the cycle. Opal-A biogenic particles (phytoliths, diatoms…), which dissolve more rapidly than other forms of silicate usually present in soils, are postulated to represent the easiest bioavailable Si for rice. We found 0.03–0.06 wt.% of BSi in soils (mainly phytoliths). This value is lower than other values from the literature. Each year, the exportation of BSi from rice cultivation is 270 ± 80 kg Si ha − 1 . We show that BSi input by irrigation is mostly composed of diatoms and we estimate it at 100 kg Si ha − 1 year − 1 . This value is more than a third of the annual Si need for rice. The budget of the dissolved silicon (DSi) fluxes gives the following results: the atmospheric and irrigation inputs represents 1% and roughly 10%, respectively, of the annual need for rice; the drainage and infiltration outputs represent 17 ± 14 and 12 ± 9 kg Si ha − 1 year − 1 , respectively; the balance of our budget shows that at least 170 kg Si ha − 1 year − 1 are exported from the soil. If we consider the soil BSi as the only source of dissolved silicon, this stock could be exhausted in 5 years.
doi_str_mv 10.1016/j.gexplo.2005.08.036
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02668855v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375674205001305</els_id><sourcerecordid>20860780</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-866a531706bb582347c5148eb85ed3c502de1f3c715bae121fd7875015a9f3f93</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYecRA-Js9nsRy5CKdYKBQ_qedlsJnVLmtTdtui_d0PEo6dhhmdeZh5CrilkFKi432Rr_Nq1fZYD8AxUBkyckAlVskypUOUpmQCTPBWyyM_JRQgbAKCyEBMiXl3rbN8le2-60KAPiesSk3hnMWkctvXQz83W-PUBk9tFxCzeXZKzxrQBr37rlLwvHt_my3T18vQ8n61Sw8pinyohDGdUgqgqrnJWSMtpobBSHGtmOeQ10oZZSXllkOa0qaWSHCg3ZcOakk3J3Zj7YVq98y6e8a174_RyttLDDHIhlOL8SCN7M7I7338eMOz11gWLbWs67A9B56AESAURLEbQ-j4Ej81fMgU9CNUbPQrVg1ANSkehce1hXMP48NGh18E6jDZq59Hudd27_wN-AGUBfbk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20860780</pqid></control><display><type>article</type><title>Silicon transfers in a rice field in Camargue (France)</title><source>ScienceDirect Freedom Collection</source><creator>Desplanques, V. ; Cary, L. ; Mouret, J.-C. ; Trolard, F. ; Bourrié, G. ; Grauby, O. ; Meunier, J.-D.</creator><creatorcontrib>Desplanques, V. ; Cary, L. ; Mouret, J.-C. ; Trolard, F. ; Bourrié, G. ; Grauby, O. ; Meunier, J.-D.</creatorcontrib><description>We conducted a study of the biogeochemical cycle of silicon in a rice field in Camargue (France) in order to evaluate the role of biogenic silicon particles (BSi) in the cycle. Opal-A biogenic particles (phytoliths, diatoms…), which dissolve more rapidly than other forms of silicate usually present in soils, are postulated to represent the easiest bioavailable Si for rice. We found 0.03–0.06 wt.% of BSi in soils (mainly phytoliths). This value is lower than other values from the literature. Each year, the exportation of BSi from rice cultivation is 270 ± 80 kg Si ha − 1 . We show that BSi input by irrigation is mostly composed of diatoms and we estimate it at 100 kg Si ha − 1 year − 1 . This value is more than a third of the annual Si need for rice. The budget of the dissolved silicon (DSi) fluxes gives the following results: the atmospheric and irrigation inputs represents 1% and roughly 10%, respectively, of the annual need for rice; the drainage and infiltration outputs represent 17 ± 14 and 12 ± 9 kg Si ha − 1 year − 1 , respectively; the balance of our budget shows that at least 170 kg Si ha − 1 year − 1 are exported from the soil. If we consider the soil BSi as the only source of dissolved silicon, this stock could be exhausted in 5 years.</description><identifier>ISSN: 0375-6742</identifier><identifier>EISSN: 1879-1689</identifier><identifier>DOI: 10.1016/j.gexplo.2005.08.036</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bacillariophyceae ; Biogenic silica ; Camargue ; Earth Sciences ; Geochemistry ; Oryza sativa ; Rice ; Sciences of the Universe ; Silicon cycle</subject><ispartof>Journal of geochemical exploration, 2006-01, Vol.88 (1), p.190-193</ispartof><rights>2005 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-866a531706bb582347c5148eb85ed3c502de1f3c715bae121fd7875015a9f3f93</citedby><cites>FETCH-LOGICAL-a394t-866a531706bb582347c5148eb85ed3c502de1f3c715bae121fd7875015a9f3f93</cites><orcidid>0000-0001-9012-9139 ; 0000-0002-0017-5877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02668855$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Desplanques, V.</creatorcontrib><creatorcontrib>Cary, L.</creatorcontrib><creatorcontrib>Mouret, J.-C.</creatorcontrib><creatorcontrib>Trolard, F.</creatorcontrib><creatorcontrib>Bourrié, G.</creatorcontrib><creatorcontrib>Grauby, O.</creatorcontrib><creatorcontrib>Meunier, J.-D.</creatorcontrib><title>Silicon transfers in a rice field in Camargue (France)</title><title>Journal of geochemical exploration</title><description>We conducted a study of the biogeochemical cycle of silicon in a rice field in Camargue (France) in order to evaluate the role of biogenic silicon particles (BSi) in the cycle. Opal-A biogenic particles (phytoliths, diatoms…), which dissolve more rapidly than other forms of silicate usually present in soils, are postulated to represent the easiest bioavailable Si for rice. We found 0.03–0.06 wt.% of BSi in soils (mainly phytoliths). This value is lower than other values from the literature. Each year, the exportation of BSi from rice cultivation is 270 ± 80 kg Si ha − 1 . We show that BSi input by irrigation is mostly composed of diatoms and we estimate it at 100 kg Si ha − 1 year − 1 . This value is more than a third of the annual Si need for rice. The budget of the dissolved silicon (DSi) fluxes gives the following results: the atmospheric and irrigation inputs represents 1% and roughly 10%, respectively, of the annual need for rice; the drainage and infiltration outputs represent 17 ± 14 and 12 ± 9 kg Si ha − 1 year − 1 , respectively; the balance of our budget shows that at least 170 kg Si ha − 1 year − 1 are exported from the soil. If we consider the soil BSi as the only source of dissolved silicon, this stock could be exhausted in 5 years.</description><subject>Bacillariophyceae</subject><subject>Biogenic silica</subject><subject>Camargue</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Oryza sativa</subject><subject>Rice</subject><subject>Sciences of the Universe</subject><subject>Silicon cycle</subject><issn>0375-6742</issn><issn>1879-1689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYecRA-Js9nsRy5CKdYKBQ_qedlsJnVLmtTdtui_d0PEo6dhhmdeZh5CrilkFKi432Rr_Nq1fZYD8AxUBkyckAlVskypUOUpmQCTPBWyyM_JRQgbAKCyEBMiXl3rbN8le2-60KAPiesSk3hnMWkctvXQz83W-PUBk9tFxCzeXZKzxrQBr37rlLwvHt_my3T18vQ8n61Sw8pinyohDGdUgqgqrnJWSMtpobBSHGtmOeQ10oZZSXllkOa0qaWSHCg3ZcOakk3J3Zj7YVq98y6e8a174_RyttLDDHIhlOL8SCN7M7I7338eMOz11gWLbWs67A9B56AESAURLEbQ-j4Ej81fMgU9CNUbPQrVg1ANSkehce1hXMP48NGh18E6jDZq59Hudd27_wN-AGUBfbk</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Desplanques, V.</creator><creator>Cary, L.</creator><creator>Mouret, J.-C.</creator><creator>Trolard, F.</creator><creator>Bourrié, G.</creator><creator>Grauby, O.</creator><creator>Meunier, J.-D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>M7N</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9012-9139</orcidid><orcidid>https://orcid.org/0000-0002-0017-5877</orcidid></search><sort><creationdate>20060101</creationdate><title>Silicon transfers in a rice field in Camargue (France)</title><author>Desplanques, V. ; Cary, L. ; Mouret, J.-C. ; Trolard, F. ; Bourrié, G. ; Grauby, O. ; Meunier, J.-D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-866a531706bb582347c5148eb85ed3c502de1f3c715bae121fd7875015a9f3f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bacillariophyceae</topic><topic>Biogenic silica</topic><topic>Camargue</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Oryza sativa</topic><topic>Rice</topic><topic>Sciences of the Universe</topic><topic>Silicon cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desplanques, V.</creatorcontrib><creatorcontrib>Cary, L.</creatorcontrib><creatorcontrib>Mouret, J.-C.</creatorcontrib><creatorcontrib>Trolard, F.</creatorcontrib><creatorcontrib>Bourrié, G.</creatorcontrib><creatorcontrib>Grauby, O.</creatorcontrib><creatorcontrib>Meunier, J.-D.</creatorcontrib><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of geochemical exploration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desplanques, V.</au><au>Cary, L.</au><au>Mouret, J.-C.</au><au>Trolard, F.</au><au>Bourrié, G.</au><au>Grauby, O.</au><au>Meunier, J.-D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon transfers in a rice field in Camargue (France)</atitle><jtitle>Journal of geochemical exploration</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>88</volume><issue>1</issue><spage>190</spage><epage>193</epage><pages>190-193</pages><issn>0375-6742</issn><eissn>1879-1689</eissn><abstract>We conducted a study of the biogeochemical cycle of silicon in a rice field in Camargue (France) in order to evaluate the role of biogenic silicon particles (BSi) in the cycle. Opal-A biogenic particles (phytoliths, diatoms…), which dissolve more rapidly than other forms of silicate usually present in soils, are postulated to represent the easiest bioavailable Si for rice. We found 0.03–0.06 wt.% of BSi in soils (mainly phytoliths). This value is lower than other values from the literature. Each year, the exportation of BSi from rice cultivation is 270 ± 80 kg Si ha − 1 . We show that BSi input by irrigation is mostly composed of diatoms and we estimate it at 100 kg Si ha − 1 year − 1 . This value is more than a third of the annual Si need for rice. The budget of the dissolved silicon (DSi) fluxes gives the following results: the atmospheric and irrigation inputs represents 1% and roughly 10%, respectively, of the annual need for rice; the drainage and infiltration outputs represent 17 ± 14 and 12 ± 9 kg Si ha − 1 year − 1 , respectively; the balance of our budget shows that at least 170 kg Si ha − 1 year − 1 are exported from the soil. If we consider the soil BSi as the only source of dissolved silicon, this stock could be exhausted in 5 years.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.gexplo.2005.08.036</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9012-9139</orcidid><orcidid>https://orcid.org/0000-0002-0017-5877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0375-6742
ispartof Journal of geochemical exploration, 2006-01, Vol.88 (1), p.190-193
issn 0375-6742
1879-1689
language eng
recordid cdi_hal_primary_oai_HAL_hal_02668855v1
source ScienceDirect Freedom Collection
subjects Bacillariophyceae
Biogenic silica
Camargue
Earth Sciences
Geochemistry
Oryza sativa
Rice
Sciences of the Universe
Silicon cycle
title Silicon transfers in a rice field in Camargue (France)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20transfers%20in%20a%20rice%20field%20in%20Camargue%20(France)&rft.jtitle=Journal%20of%20geochemical%20exploration&rft.au=Desplanques,%20V.&rft.date=2006-01-01&rft.volume=88&rft.issue=1&rft.spage=190&rft.epage=193&rft.pages=190-193&rft.issn=0375-6742&rft.eissn=1879-1689&rft_id=info:doi/10.1016/j.gexplo.2005.08.036&rft_dat=%3Cproquest_hal_p%3E20860780%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a394t-866a531706bb582347c5148eb85ed3c502de1f3c715bae121fd7875015a9f3f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20860780&rft_id=info:pmid/&rfr_iscdi=true