Loading…

Cloning of two contrasting high-affinity sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae

Two cDNAs, LeST1-1 (AF347613) and LeST1-2 (AF347614), encoding sulfate transporters have been cloned from tomato (Lycopersicon esculentum Mill.) by reverse transcription—polymerase chain reaction and their expression characterised. Sharing 76% identity at the amino acid level, the transporters are p...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2003-11, Vol.218 (1), p.58-64
Main Authors: Howarth, Jonathan R., Fourcroy, Pierre, Davidian, Jean-Claude, Smith, Frank W., Hawkesford, Malcolm J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two cDNAs, LeST1-1 (AF347613) and LeST1-2 (AF347614), encoding sulfate transporters have been cloned from tomato (Lycopersicon esculentum Mill.) by reverse transcription—polymerase chain reaction and their expression characterised. Sharing 76% identity at the amino acid level, the transporters are phylogenetically associated with the Group-1, high-affinity plant sulfate transporters. Both were shown to have high affinity for sulfate by uptake kinetic analysis using a yeast (Saccharomyces cerevisiae) sulfate-transporter mutant. Km values of 11.5 μM and 9.8 μM were calculated for LeST1-1 and LeST1-2, respectively, the same order of magnitude as those previously reported for several other Group-1 high-affinity sulfate transporters. In situ hybridisation to S-deficient tomato roots showed LeST1-1 to be expressed in the epidermis and pericycle, whereas LeST1-2 expression was located to the epidermis only. Northern analysis shows that the mRNA abundances of both LeST1-1 and LeST1-2 are upregulated in the root in response to sulfate deprivation. LeST1-1 is specifically expressed in root tissue, a characteristic of Group-1 sulfate transporters. LeST1-2, however, was also detected in tomato leaves and stems and is upregulated and expressed to a similar extent in these tissues under conditions of sulfate deprivation. Induction of LeST1-2 expression was also observed in the vascular tissues of a resistant line of tomato infected with the vascular wilt pathogen Verticillium dahliae.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-003-1085-5