Loading…

Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals

Involvement of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied during the last decade. In all mammalian species, IGF-I stimulates granulosa cell proliferation and steroidogenesis. The concentrations of IGF-I and -II do not...

Full description

Saved in:
Bibliographic Details
Published in:Domestic animal endocrinology 2002-07, Vol.23 (1), p.139-154
Main Authors: Monget, Philippe, Fabre, Stéphane, Mulsant, Philippe, Lecerf, Frédéric, Elsen, Jean-Michel, Mazerbourg, Sabine, Pisselet, Claudine, Monniaux, Danielle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Involvement of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied during the last decade. In all mammalian species, IGF-I stimulates granulosa cell proliferation and steroidogenesis. The concentrations of IGF-I and -II do not vary during terminal follicular growth and atresia. In contrast, the levels of IGFBP-2 and -4, as well as IGFBP-5 in ruminants, dramatically decrease and increase during terminal follicular growth and atresia, respectively. These changes are responsible for an increase and a decrease in IGF bioavailability during follicular growth and atresia, respectively. They are partly explained by changes in ovarian expression. In particular, expression of IGFBP-2 mRNA decreases during follicular growth in ovine, bovine and porcine ovaries, and expression of IGFBP-5 mRNA dramatically increases in granulosa cells of bovine and ovine atretic follicles. Changes in IGFBP-2 and -4 levels are also due to changes in intrafollicular levels of specific proteases. Recently, we have shown that the pregnancy-associated plasma protein-A (PAPP-A) is responsible for the degradation of IGFBP-4 in preovulatory follicles of domestic animals. Expression of PAPP-A mRNA is restricted to the granulosa cell compartment, and is positively correlated to expression of aromatase and LH receptor. From recent evidence, the bone morphogenetic protein (BMP) family would also play a key role in ovarian physiology of domestic animals. In particular, we and others have recently shown that a non-conservative substitution (Q249R) in the bone morphogenetic protein-receptor type IB (BMPR-IB) coding sequence is fully associated with the hyperprolific phenotype of FecB B / FecB B Booroola ewes. BMP-4 and GDF-5, natural ligands of BMPR-IB, strongly inhibit secretion of progesterone by ovine granulosa cells in vitro, but granulosa cells from FecB B / FecB B ewes are less responsive than those from FecB +/ FecB + to the action of these peptides. It is suggested that in FecB B / FecB B ewes, Q249R substitution would impair the function of BMPR-IB, leading to a precocious differentiation of granulosa cells and of follicular maturation. Interestingly, recent findings have described mutations in BMP-15 gene associated with hyperprolific phenotypes in Inverdale and Hanna ewes, suggesting that the BMP pathway plays a crucial role in the control of ovulation rate.
ISSN:0739-7240
1879-0054
DOI:10.1016/S0739-7240(02)00152-2