Loading…

Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense

Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Popul...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2004-03, Vol.134 (3), p.1027-1038
Main Authors: Rouhier, Nicolas, Gelhaye, Eric, Gualberto, Jose M., Marie-Noelle Jordy, Elisabeth De Fay, Hirasawa, Masakazu, Duplessis, Sebastien, Lemaire, Stephane D., Pascal Frey, Martin, Francis, Manieri, Wanda, Knaff, David B., Jacquot, Jean-Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63
cites cdi_FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63
container_end_page 1038
container_issue 3
container_start_page 1027
container_title Plant physiology (Bethesda)
container_volume 134
creator Rouhier, Nicolas
Gelhaye, Eric
Gualberto, Jose M.
Marie-Noelle Jordy
Elisabeth De Fay
Hirasawa, Masakazu
Duplessis, Sebastien
Lemaire, Stephane D.
Pascal Frey
Martin, Francis
Manieri, Wanda
Knaff, David B.
Jacquot, Jean-Pierre
description Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and thertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.
doi_str_mv 10.1104/pp.103.035865
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02680157v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281636</jstor_id><sourcerecordid>4281636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgaB8jGwIeWFgSDl_1hmrQgGpEkWwR47t0EDqRHaK4N_jKhVd7PPdcx5ehC4JjAkBftd1YwJsDEwoKQ7QiAhGMyq4OkQjgFSDUvkJOo3xEwAII_wYnRCeTyRlaoTMsu0aHfDShfanDs6m0-PXMZ7i91Xd7hrZovZfzuLZqmnDdiH2eOr7Os2s9j2eb7xJL68bnLaXul-1H87je1c5H905Oqp0E93F7j5Db_OH99lTtnh5fJ5NF5kRRPWZLhlIZqkFaUprpaq4UJURWjkK1AnOKM9LVUohrHIgdZ7bspxYwiaVkewM3Q6_rnRTdKFe6_BbtLounqaLYtsDKhUQMfkmyWaDNaGNMbjqf4FAsY216LpUsmKINfnrwXebcu3sXu9yTOBmB3Q0uqmC9qaOeydEToXiyV0N7jP2bfifc6qIZJL9AQR_iYc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Rouhier, Nicolas ; Gelhaye, Eric ; Gualberto, Jose M. ; Marie-Noelle Jordy ; Elisabeth De Fay ; Hirasawa, Masakazu ; Duplessis, Sebastien ; Lemaire, Stephane D. ; Pascal Frey ; Martin, Francis ; Manieri, Wanda ; Knaff, David B. ; Jacquot, Jean-Pierre</creator><creatorcontrib>Rouhier, Nicolas ; Gelhaye, Eric ; Gualberto, Jose M. ; Marie-Noelle Jordy ; Elisabeth De Fay ; Hirasawa, Masakazu ; Duplessis, Sebastien ; Lemaire, Stephane D. ; Pascal Frey ; Martin, Francis ; Manieri, Wanda ; Knaff, David B. ; Jacquot, Jean-Pierre</creatorcontrib><description>Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and thertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.035865</identifier><identifier>PMID: 14976238</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Amino Acid Sequence ; Antioxidants - metabolism ; Base Sequence ; Biochemical Processes and Macromolecular Structures ; Biochemistry ; Biological and medical sciences ; Catalytic Domain - genetics ; Chloroplast Thioredoxins ; Chloroplasts ; Chloroplasts - metabolism ; Dimerization ; Disulfides ; DNA, Plant - genetics ; Electron Transport ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Generalities. Disease free stocks ; Genes, Plant ; Genetics ; Infections ; Leaves ; Life Sciences ; Macromolecular Substances ; Metabolism ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oxidation-Reduction ; Peroxidases - chemistry ; Peroxidases - genetics ; Peroxidases - metabolism ; Peroxides ; Peroxiredoxins ; Phytopathology. Animal pests. Plant and forest protection ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant physiology and development ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants genetics ; Populus - genetics ; Populus - metabolism ; Populus - microbiology ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Substrate Specificity ; Thioredoxin ; Thioredoxins - metabolism</subject><ispartof>Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.1027-1038</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63</citedby><cites>FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63</cites><orcidid>0000-0001-6294-737X ; 0000-0002-0699-9113 ; 0000-0002-2036-7884 ; 0000-0002-2072-2989 ; 0000-0003-4975-8587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281636$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281636$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15592584$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14976238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02680157$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rouhier, Nicolas</creatorcontrib><creatorcontrib>Gelhaye, Eric</creatorcontrib><creatorcontrib>Gualberto, Jose M.</creatorcontrib><creatorcontrib>Marie-Noelle Jordy</creatorcontrib><creatorcontrib>Elisabeth De Fay</creatorcontrib><creatorcontrib>Hirasawa, Masakazu</creatorcontrib><creatorcontrib>Duplessis, Sebastien</creatorcontrib><creatorcontrib>Lemaire, Stephane D.</creatorcontrib><creatorcontrib>Pascal Frey</creatorcontrib><creatorcontrib>Martin, Francis</creatorcontrib><creatorcontrib>Manieri, Wanda</creatorcontrib><creatorcontrib>Knaff, David B.</creatorcontrib><creatorcontrib>Jacquot, Jean-Pierre</creatorcontrib><title>Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and thertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.</description><subject>Amino Acid Sequence</subject><subject>Antioxidants - metabolism</subject><subject>Base Sequence</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Catalytic Domain - genetics</subject><subject>Chloroplast Thioredoxins</subject><subject>Chloroplasts</subject><subject>Chloroplasts - metabolism</subject><subject>Dimerization</subject><subject>Disulfides</subject><subject>DNA, Plant - genetics</subject><subject>Electron Transport</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Generalities. Disease free stocks</subject><subject>Genes, Plant</subject><subject>Genetics</subject><subject>Infections</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Macromolecular Substances</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oxidation-Reduction</subject><subject>Peroxidases - chemistry</subject><subject>Peroxidases - genetics</subject><subject>Peroxidases - metabolism</subject><subject>Peroxides</subject><subject>Peroxiredoxins</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants genetics</subject><subject>Populus - genetics</subject><subject>Populus - metabolism</subject><subject>Populus - microbiology</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Thioredoxin</subject><subject>Thioredoxins - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpF0D1PwzAQBmALgaB8jGwIeWFgSDl_1hmrQgGpEkWwR47t0EDqRHaK4N_jKhVd7PPdcx5ehC4JjAkBftd1YwJsDEwoKQ7QiAhGMyq4OkQjgFSDUvkJOo3xEwAII_wYnRCeTyRlaoTMsu0aHfDShfanDs6m0-PXMZ7i91Xd7hrZovZfzuLZqmnDdiH2eOr7Os2s9j2eb7xJL68bnLaXul-1H87je1c5H905Oqp0E93F7j5Db_OH99lTtnh5fJ5NF5kRRPWZLhlIZqkFaUprpaq4UJURWjkK1AnOKM9LVUohrHIgdZ7bspxYwiaVkewM3Q6_rnRTdKFe6_BbtLounqaLYtsDKhUQMfkmyWaDNaGNMbjqf4FAsY216LpUsmKINfnrwXebcu3sXu9yTOBmB3Q0uqmC9qaOeydEToXiyV0N7jP2bfifc6qIZJL9AQR_iYc</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Rouhier, Nicolas</creator><creator>Gelhaye, Eric</creator><creator>Gualberto, Jose M.</creator><creator>Marie-Noelle Jordy</creator><creator>Elisabeth De Fay</creator><creator>Hirasawa, Masakazu</creator><creator>Duplessis, Sebastien</creator><creator>Lemaire, Stephane D.</creator><creator>Pascal Frey</creator><creator>Martin, Francis</creator><creator>Manieri, Wanda</creator><creator>Knaff, David B.</creator><creator>Jacquot, Jean-Pierre</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6294-737X</orcidid><orcidid>https://orcid.org/0000-0002-0699-9113</orcidid><orcidid>https://orcid.org/0000-0002-2036-7884</orcidid><orcidid>https://orcid.org/0000-0002-2072-2989</orcidid><orcidid>https://orcid.org/0000-0003-4975-8587</orcidid></search><sort><creationdate>20040301</creationdate><title>Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense</title><author>Rouhier, Nicolas ; Gelhaye, Eric ; Gualberto, Jose M. ; Marie-Noelle Jordy ; Elisabeth De Fay ; Hirasawa, Masakazu ; Duplessis, Sebastien ; Lemaire, Stephane D. ; Pascal Frey ; Martin, Francis ; Manieri, Wanda ; Knaff, David B. ; Jacquot, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Antioxidants - metabolism</topic><topic>Base Sequence</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Catalytic Domain - genetics</topic><topic>Chloroplast Thioredoxins</topic><topic>Chloroplasts</topic><topic>Chloroplasts - metabolism</topic><topic>Dimerization</topic><topic>Disulfides</topic><topic>DNA, Plant - genetics</topic><topic>Electron Transport</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Generalities. Disease free stocks</topic><topic>Genes, Plant</topic><topic>Genetics</topic><topic>Infections</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Macromolecular Substances</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oxidation-Reduction</topic><topic>Peroxidases - chemistry</topic><topic>Peroxidases - genetics</topic><topic>Peroxidases - metabolism</topic><topic>Peroxides</topic><topic>Peroxiredoxins</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants genetics</topic><topic>Populus - genetics</topic><topic>Populus - metabolism</topic><topic>Populus - microbiology</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Thioredoxin</topic><topic>Thioredoxins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouhier, Nicolas</creatorcontrib><creatorcontrib>Gelhaye, Eric</creatorcontrib><creatorcontrib>Gualberto, Jose M.</creatorcontrib><creatorcontrib>Marie-Noelle Jordy</creatorcontrib><creatorcontrib>Elisabeth De Fay</creatorcontrib><creatorcontrib>Hirasawa, Masakazu</creatorcontrib><creatorcontrib>Duplessis, Sebastien</creatorcontrib><creatorcontrib>Lemaire, Stephane D.</creatorcontrib><creatorcontrib>Pascal Frey</creatorcontrib><creatorcontrib>Martin, Francis</creatorcontrib><creatorcontrib>Manieri, Wanda</creatorcontrib><creatorcontrib>Knaff, David B.</creatorcontrib><creatorcontrib>Jacquot, Jean-Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouhier, Nicolas</au><au>Gelhaye, Eric</au><au>Gualberto, Jose M.</au><au>Marie-Noelle Jordy</au><au>Elisabeth De Fay</au><au>Hirasawa, Masakazu</au><au>Duplessis, Sebastien</au><au>Lemaire, Stephane D.</au><au>Pascal Frey</au><au>Martin, Francis</au><au>Manieri, Wanda</au><au>Knaff, David B.</au><au>Jacquot, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>134</volume><issue>3</issue><spage>1027</spage><epage>1038</epage><pages>1027-1038</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and thertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>14976238</pmid><doi>10.1104/pp.103.035865</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6294-737X</orcidid><orcidid>https://orcid.org/0000-0002-0699-9113</orcidid><orcidid>https://orcid.org/0000-0002-2036-7884</orcidid><orcidid>https://orcid.org/0000-0002-2072-2989</orcidid><orcidid>https://orcid.org/0000-0003-4975-8587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.1027-1038
issn 0032-0889
1532-2548
language eng
recordid cdi_hal_primary_oai_HAL_hal_02680157v1
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Amino Acid Sequence
Antioxidants - metabolism
Base Sequence
Biochemical Processes and Macromolecular Structures
Biochemistry
Biological and medical sciences
Catalytic Domain - genetics
Chloroplast Thioredoxins
Chloroplasts
Chloroplasts - metabolism
Dimerization
Disulfides
DNA, Plant - genetics
Electron Transport
Enzymes
Fundamental and applied biological sciences. Psychology
Gene Expression
Generalities. Disease free stocks
Genes, Plant
Genetics
Infections
Leaves
Life Sciences
Macromolecular Substances
Metabolism
Molecular Sequence Data
Mutagenesis, Site-Directed
Oxidation-Reduction
Peroxidases - chemistry
Peroxidases - genetics
Peroxidases - metabolism
Peroxides
Peroxiredoxins
Phytopathology. Animal pests. Plant and forest protection
Plant Diseases - genetics
Plant Diseases - microbiology
Plant physiology and development
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plants genetics
Populus - genetics
Populus - metabolism
Populus - microbiology
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sequence Homology, Amino Acid
Substrate Specificity
Thioredoxin
Thioredoxins - metabolism
title Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poplar%20Peroxiredoxin%20Q.%20A%20Thioredoxin-Linked%20Chloroplast%20Antioxidant%20Functional%20in%20Pathogen%20Defense&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Rouhier,%20Nicolas&rft.date=2004-03-01&rft.volume=134&rft.issue=3&rft.spage=1027&rft.epage=1038&rft.pages=1027-1038&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.035865&rft_dat=%3Cjstor_hal_p%3E4281636%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/14976238&rft_jstor_id=4281636&rfr_iscdi=true