Loading…
Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense
Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Popul...
Saved in:
Published in: | Plant physiology (Bethesda) 2004-03, Vol.134 (3), p.1027-1038 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63 |
container_end_page | 1038 |
container_issue | 3 |
container_start_page | 1027 |
container_title | Plant physiology (Bethesda) |
container_volume | 134 |
creator | Rouhier, Nicolas Gelhaye, Eric Gualberto, Jose M. Marie-Noelle Jordy Elisabeth De Fay Hirasawa, Masakazu Duplessis, Sebastien Lemaire, Stephane D. Pascal Frey Martin, Francis Manieri, Wanda Knaff, David B. Jacquot, Jean-Pierre |
description | Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and thertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction. |
doi_str_mv | 10.1104/pp.103.035865 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02680157v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281636</jstor_id><sourcerecordid>4281636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgaB8jGwIeWFgSDl_1hmrQgGpEkWwR47t0EDqRHaK4N_jKhVd7PPdcx5ehC4JjAkBftd1YwJsDEwoKQ7QiAhGMyq4OkQjgFSDUvkJOo3xEwAII_wYnRCeTyRlaoTMsu0aHfDShfanDs6m0-PXMZ7i91Xd7hrZovZfzuLZqmnDdiH2eOr7Os2s9j2eb7xJL68bnLaXul-1H87je1c5H905Oqp0E93F7j5Db_OH99lTtnh5fJ5NF5kRRPWZLhlIZqkFaUprpaq4UJURWjkK1AnOKM9LVUohrHIgdZ7bspxYwiaVkewM3Q6_rnRTdKFe6_BbtLounqaLYtsDKhUQMfkmyWaDNaGNMbjqf4FAsY216LpUsmKINfnrwXebcu3sXu9yTOBmB3Q0uqmC9qaOeydEToXiyV0N7jP2bfifc6qIZJL9AQR_iYc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Rouhier, Nicolas ; Gelhaye, Eric ; Gualberto, Jose M. ; Marie-Noelle Jordy ; Elisabeth De Fay ; Hirasawa, Masakazu ; Duplessis, Sebastien ; Lemaire, Stephane D. ; Pascal Frey ; Martin, Francis ; Manieri, Wanda ; Knaff, David B. ; Jacquot, Jean-Pierre</creator><creatorcontrib>Rouhier, Nicolas ; Gelhaye, Eric ; Gualberto, Jose M. ; Marie-Noelle Jordy ; Elisabeth De Fay ; Hirasawa, Masakazu ; Duplessis, Sebastien ; Lemaire, Stephane D. ; Pascal Frey ; Martin, Francis ; Manieri, Wanda ; Knaff, David B. ; Jacquot, Jean-Pierre</creatorcontrib><description>Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and thertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.035865</identifier><identifier>PMID: 14976238</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Amino Acid Sequence ; Antioxidants - metabolism ; Base Sequence ; Biochemical Processes and Macromolecular Structures ; Biochemistry ; Biological and medical sciences ; Catalytic Domain - genetics ; Chloroplast Thioredoxins ; Chloroplasts ; Chloroplasts - metabolism ; Dimerization ; Disulfides ; DNA, Plant - genetics ; Electron Transport ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Generalities. Disease free stocks ; Genes, Plant ; Genetics ; Infections ; Leaves ; Life Sciences ; Macromolecular Substances ; Metabolism ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oxidation-Reduction ; Peroxidases - chemistry ; Peroxidases - genetics ; Peroxidases - metabolism ; Peroxides ; Peroxiredoxins ; Phytopathology. Animal pests. Plant and forest protection ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant physiology and development ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants genetics ; Populus - genetics ; Populus - metabolism ; Populus - microbiology ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Substrate Specificity ; Thioredoxin ; Thioredoxins - metabolism</subject><ispartof>Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.1027-1038</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63</citedby><cites>FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63</cites><orcidid>0000-0001-6294-737X ; 0000-0002-0699-9113 ; 0000-0002-2036-7884 ; 0000-0002-2072-2989 ; 0000-0003-4975-8587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281636$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281636$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15592584$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14976238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02680157$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rouhier, Nicolas</creatorcontrib><creatorcontrib>Gelhaye, Eric</creatorcontrib><creatorcontrib>Gualberto, Jose M.</creatorcontrib><creatorcontrib>Marie-Noelle Jordy</creatorcontrib><creatorcontrib>Elisabeth De Fay</creatorcontrib><creatorcontrib>Hirasawa, Masakazu</creatorcontrib><creatorcontrib>Duplessis, Sebastien</creatorcontrib><creatorcontrib>Lemaire, Stephane D.</creatorcontrib><creatorcontrib>Pascal Frey</creatorcontrib><creatorcontrib>Martin, Francis</creatorcontrib><creatorcontrib>Manieri, Wanda</creatorcontrib><creatorcontrib>Knaff, David B.</creatorcontrib><creatorcontrib>Jacquot, Jean-Pierre</creatorcontrib><title>Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and thertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.</description><subject>Amino Acid Sequence</subject><subject>Antioxidants - metabolism</subject><subject>Base Sequence</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Catalytic Domain - genetics</subject><subject>Chloroplast Thioredoxins</subject><subject>Chloroplasts</subject><subject>Chloroplasts - metabolism</subject><subject>Dimerization</subject><subject>Disulfides</subject><subject>DNA, Plant - genetics</subject><subject>Electron Transport</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Generalities. Disease free stocks</subject><subject>Genes, Plant</subject><subject>Genetics</subject><subject>Infections</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Macromolecular Substances</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oxidation-Reduction</subject><subject>Peroxidases - chemistry</subject><subject>Peroxidases - genetics</subject><subject>Peroxidases - metabolism</subject><subject>Peroxides</subject><subject>Peroxiredoxins</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants genetics</subject><subject>Populus - genetics</subject><subject>Populus - metabolism</subject><subject>Populus - microbiology</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Thioredoxin</subject><subject>Thioredoxins - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpF0D1PwzAQBmALgaB8jGwIeWFgSDl_1hmrQgGpEkWwR47t0EDqRHaK4N_jKhVd7PPdcx5ehC4JjAkBftd1YwJsDEwoKQ7QiAhGMyq4OkQjgFSDUvkJOo3xEwAII_wYnRCeTyRlaoTMsu0aHfDShfanDs6m0-PXMZ7i91Xd7hrZovZfzuLZqmnDdiH2eOr7Os2s9j2eb7xJL68bnLaXul-1H87je1c5H905Oqp0E93F7j5Db_OH99lTtnh5fJ5NF5kRRPWZLhlIZqkFaUprpaq4UJURWjkK1AnOKM9LVUohrHIgdZ7bspxYwiaVkewM3Q6_rnRTdKFe6_BbtLounqaLYtsDKhUQMfkmyWaDNaGNMbjqf4FAsY216LpUsmKINfnrwXebcu3sXu9yTOBmB3Q0uqmC9qaOeydEToXiyV0N7jP2bfifc6qIZJL9AQR_iYc</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Rouhier, Nicolas</creator><creator>Gelhaye, Eric</creator><creator>Gualberto, Jose M.</creator><creator>Marie-Noelle Jordy</creator><creator>Elisabeth De Fay</creator><creator>Hirasawa, Masakazu</creator><creator>Duplessis, Sebastien</creator><creator>Lemaire, Stephane D.</creator><creator>Pascal Frey</creator><creator>Martin, Francis</creator><creator>Manieri, Wanda</creator><creator>Knaff, David B.</creator><creator>Jacquot, Jean-Pierre</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6294-737X</orcidid><orcidid>https://orcid.org/0000-0002-0699-9113</orcidid><orcidid>https://orcid.org/0000-0002-2036-7884</orcidid><orcidid>https://orcid.org/0000-0002-2072-2989</orcidid><orcidid>https://orcid.org/0000-0003-4975-8587</orcidid></search><sort><creationdate>20040301</creationdate><title>Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense</title><author>Rouhier, Nicolas ; Gelhaye, Eric ; Gualberto, Jose M. ; Marie-Noelle Jordy ; Elisabeth De Fay ; Hirasawa, Masakazu ; Duplessis, Sebastien ; Lemaire, Stephane D. ; Pascal Frey ; Martin, Francis ; Manieri, Wanda ; Knaff, David B. ; Jacquot, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Antioxidants - metabolism</topic><topic>Base Sequence</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Catalytic Domain - genetics</topic><topic>Chloroplast Thioredoxins</topic><topic>Chloroplasts</topic><topic>Chloroplasts - metabolism</topic><topic>Dimerization</topic><topic>Disulfides</topic><topic>DNA, Plant - genetics</topic><topic>Electron Transport</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Generalities. Disease free stocks</topic><topic>Genes, Plant</topic><topic>Genetics</topic><topic>Infections</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Macromolecular Substances</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oxidation-Reduction</topic><topic>Peroxidases - chemistry</topic><topic>Peroxidases - genetics</topic><topic>Peroxidases - metabolism</topic><topic>Peroxides</topic><topic>Peroxiredoxins</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants genetics</topic><topic>Populus - genetics</topic><topic>Populus - metabolism</topic><topic>Populus - microbiology</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Thioredoxin</topic><topic>Thioredoxins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouhier, Nicolas</creatorcontrib><creatorcontrib>Gelhaye, Eric</creatorcontrib><creatorcontrib>Gualberto, Jose M.</creatorcontrib><creatorcontrib>Marie-Noelle Jordy</creatorcontrib><creatorcontrib>Elisabeth De Fay</creatorcontrib><creatorcontrib>Hirasawa, Masakazu</creatorcontrib><creatorcontrib>Duplessis, Sebastien</creatorcontrib><creatorcontrib>Lemaire, Stephane D.</creatorcontrib><creatorcontrib>Pascal Frey</creatorcontrib><creatorcontrib>Martin, Francis</creatorcontrib><creatorcontrib>Manieri, Wanda</creatorcontrib><creatorcontrib>Knaff, David B.</creatorcontrib><creatorcontrib>Jacquot, Jean-Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouhier, Nicolas</au><au>Gelhaye, Eric</au><au>Gualberto, Jose M.</au><au>Marie-Noelle Jordy</au><au>Elisabeth De Fay</au><au>Hirasawa, Masakazu</au><au>Duplessis, Sebastien</au><au>Lemaire, Stephane D.</au><au>Pascal Frey</au><au>Martin, Francis</au><au>Manieri, Wanda</au><au>Knaff, David B.</au><au>Jacquot, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>134</volume><issue>3</issue><spage>1027</spage><epage>1038</epage><pages>1027-1038</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula × Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and thertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>14976238</pmid><doi>10.1104/pp.103.035865</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6294-737X</orcidid><orcidid>https://orcid.org/0000-0002-0699-9113</orcidid><orcidid>https://orcid.org/0000-0002-2036-7884</orcidid><orcidid>https://orcid.org/0000-0002-2072-2989</orcidid><orcidid>https://orcid.org/0000-0003-4975-8587</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.1027-1038 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02680157v1 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Amino Acid Sequence Antioxidants - metabolism Base Sequence Biochemical Processes and Macromolecular Structures Biochemistry Biological and medical sciences Catalytic Domain - genetics Chloroplast Thioredoxins Chloroplasts Chloroplasts - metabolism Dimerization Disulfides DNA, Plant - genetics Electron Transport Enzymes Fundamental and applied biological sciences. Psychology Gene Expression Generalities. Disease free stocks Genes, Plant Genetics Infections Leaves Life Sciences Macromolecular Substances Metabolism Molecular Sequence Data Mutagenesis, Site-Directed Oxidation-Reduction Peroxidases - chemistry Peroxidases - genetics Peroxidases - metabolism Peroxides Peroxiredoxins Phytopathology. Animal pests. Plant and forest protection Plant Diseases - genetics Plant Diseases - microbiology Plant physiology and development Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Plants Plants genetics Populus - genetics Populus - metabolism Populus - microbiology Proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Sequence Homology, Amino Acid Substrate Specificity Thioredoxin Thioredoxins - metabolism |
title | Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poplar%20Peroxiredoxin%20Q.%20A%20Thioredoxin-Linked%20Chloroplast%20Antioxidant%20Functional%20in%20Pathogen%20Defense&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Rouhier,%20Nicolas&rft.date=2004-03-01&rft.volume=134&rft.issue=3&rft.spage=1027&rft.epage=1038&rft.pages=1027-1038&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.035865&rft_dat=%3Cjstor_hal_p%3E4281636%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-ab3063d2d06cbdd68f458fc5a8e202e543249b8b655d8e06a99dbb7d137fc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/14976238&rft_jstor_id=4281636&rfr_iscdi=true |