Loading…

Lignification in the flax stem: evidence for an unusual lignin in bast fibers

In the context of our research on cell wall formation and maturation in flax (Linum usitatissimum L) bast fibers, we (1) confirmed the presence of lignin in bast fibers and (2) quantified and characterized the chemical nature of this lignin at two developmental stages. Histochemical methods (Weisner...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2005-10, Vol.222 (2), p.234-245
Main Authors: Day, A, Ruel, K, Neutelings, G, Cronier, D, David, H, Hawkins, S, Chabbert, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the context of our research on cell wall formation and maturation in flax (Linum usitatissimum L) bast fibers, we (1) confirmed the presence of lignin in bast fibers and (2) quantified and characterized the chemical nature of this lignin at two developmental stages. Histochemical methods (Weisner and Maule reagents and KMnO4-staining) indicating the presence of lignin in bast fibers at the light and electron microscope levels were confirmed by chemical analyses (acetyl bromide). In general, the lignin content in flax bast fibers varied between 1.5% and 4.2% of the dry cell wall residues (CWRs) as compared to values varying between 23.7% and 31.4% in flax xylem tissues. Immunological and chemical analyses (thioacidolysis and nitrobenzene oxidation) indicated that both flax xylem- and bast fiber-lignins were rich in guaiacyl (G) units with S/G values inferior to 0.5. In bast fibers, the highly sensitive immunological probes allowed the detection of condensed guaiacyl-type (G) lignins in the middle lamella, cell wall junctions, and in the S1 layer of the secondary wall. In addition, lower quantities of mixed guaiacyl-syringyl (GS) lignins could be detected throughout the secondary cell wall. Chemical analyses suggested that flax bast-fiber lignin is more condensed than the corresponding xylem lignin. In addition, H units represented up to 25% of the monomers released from bast-fiber lignin as opposed to a value of 1% for the corresponding xylem tissue. Such an observation indicates that the structure of flax bast-fiber lignin is significantly different from that of the more typical 'woody plant lignin', thereby suggesting that flax bast fibers represent an interesting system for studying an unusual lignification process.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-005-1537-1