Loading…

Aerobic Denitrifiers Isolated from Diverse Natural and Managed Ecosystems

Twenty-eight bacterial strains were isolated from an ecosystem adapted to fluctuating oxic-anoxic conditions. This ecosystem comprised a mixture of different natural and wastewater treatment environments. Among the 28 strains isolated, 10 exhibited aerobic denitrifying activity, i.e., corespiration...

Full description

Saved in:
Bibliographic Details
Published in:Microbial ecology 2000-02, Vol.39 (2), p.145-152
Main Authors: PATUREAU, D, ZUMSTEIN, E, DELGENES, J. P, MOLETTA, R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Twenty-eight bacterial strains were isolated from an ecosystem adapted to fluctuating oxic-anoxic conditions. This ecosystem comprised a mixture of different natural and wastewater treatment environments. Among the 28 strains isolated, 10 exhibited aerobic denitrifying activity, i.e., corespiration of oxygen and nitrate and simultaneous production of nitrite by 4 of them and of nitrogen gas by the remaining 6. Comparisons between the 16S rDNA sequences of the 10 strains showed that 3 of them were identical to M. aerodenitrificans, whereas RAPD profiles showed that the 3 strains were identical to each other but that they were different from M. aerodenitrificans. This implies that alternating aerobic-anoxic conditions allowed the isolation of a new strain of this aerobic denitrifier. Moreover, other denitrifying bacteria belonging to the genera Paracoccus, Thiobacillus, Enterobacter, Comamonas, and Sphingomonas were isolated in this way. These data imply that a wide variety of bacteria are able to carry out this type of metabolism. M. aerodenitrificans was also detected in methanogenic, denitrifying, nitrifying, phosphate removal, and activated sludge ecosystems by two-step PCR amplification. After 4 months of acclimation to oxic-anoxic phases, the strain was also detected in a canal and in a pond. This suggests that there is no specific natural ecological niche for aerobic denitrifiers but, as soon as selective pressure such as alternating aeration conditions is applied, this metabolism is amplified.
ISSN:0095-3628
1432-184X
DOI:10.1007/s002480000009