Loading…

Optimised importance sampling quantile estimation

This paper considers the use of an auxiliary variable X* to estimate quantiles of a test statistic X; X* may be an asymptotic expansion of X, or a simplified version which ignores some of the covariance structure. The proposed estimator involves three stages. First a large sample is drawn, and X* is...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 1996-12, Vol.83 (4), p.791-800
Main Authors: GOFFINET, BRUNO, WALLACH, DANIEL
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 800
container_issue 4
container_start_page 791
container_title Biometrika
container_volume 83
creator GOFFINET, BRUNO
WALLACH, DANIEL
description This paper considers the use of an auxiliary variable X* to estimate quantiles of a test statistic X; X* may be an asymptotic expansion of X, or a simplified version which ignores some of the covariance structure. The proposed estimator involves three stages. First a large sample is drawn, and X* is evaluated. Then a first subsample is drawn, X and X* are evaluated and the conditional distribution of X given X* is estimated. Then a second subsample is drawn with weighting which is optimised for this conditional distribution, and for a particular quantile. From this subsample, an importance sampling estimator of the quantile is obtained. The resulting estimator is shown to have substantially lower mean squared error than the conventional estimator, and to be reasonably robust both to errors in the model for the conditional distribution and to the quantile assumed for the optimisation. An example in genetics is given.
doi_str_mv 10.1093/biomet/83.4.791
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02686947v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2337283</jstor_id><sourcerecordid>2337283</sourcerecordid><originalsourceid>FETCH-LOGICAL-h275t-7b24467ea8e611e13f79e8abc36f680e83cb0892e2def7e95da1f85cd64985163</originalsourceid><addsrcrecordid>eNpFjz1PwzAQhi0EEqUwszBkYGFIa8ffY1VRglRUBpAQi-UkF-qSL2KD4N-TKqhMp7vnuTu9CF0SPCNY03nm2hrCXNEZm0lNjtCEMMFiygk-RhOMsYgpY-wUnXm_27eCiwkimy642nkoIld3bR9sk0Pkbd1VrnmLPj5tE1wFEfhBs8G1zTk6KW3l4eKvTtHz6vZpmcbrzd39crGOt4nkIZZZwpiQYBUIQoDQUmpQNsupKIXCoGieYaUTSAooJWheWFIqnheCacWJoFN0M97d2sp0_fC9_zGtdSZdrM1-hhOhhGbyiwzu9eh21ue2KvshhfOHrURRRcVeuxq1nQ9t_48plYMy4HjEzgf4PmDbvxshqeQmfXk1j5o9PCzTleH0F3bMbk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimised importance sampling quantile estimation</title><source>Oxford Journals Online</source><source>JSTOR Archival Journals</source><creator>GOFFINET, BRUNO ; WALLACH, DANIEL</creator><creatorcontrib>GOFFINET, BRUNO ; WALLACH, DANIEL</creatorcontrib><description>This paper considers the use of an auxiliary variable X* to estimate quantiles of a test statistic X; X* may be an asymptotic expansion of X, or a simplified version which ignores some of the covariance structure. The proposed estimator involves three stages. First a large sample is drawn, and X* is evaluated. Then a first subsample is drawn, X and X* are evaluated and the conditional distribution of X given X* is estimated. Then a second subsample is drawn with weighting which is optimised for this conditional distribution, and for a particular quantile. From this subsample, an importance sampling estimator of the quantile is obtained. The resulting estimator is shown to have substantially lower mean squared error than the conventional estimator, and to be reasonably robust both to errors in the model for the conditional distribution and to the quantile assumed for the optimisation. An example in genetics is given.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/83.4.791</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Approximation ; Chromosomes ; Distribution theory ; Estimators ; Exact sciences and technology ; Importance sampling Mixture model ; Life Sciences ; Mathematics ; Monte Carlo ; Population estimates ; Probability and statistics ; QTL ; Quantile estimation ; Quantitative trait loci ; Ratio test ; Sampling distributions ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Simulation ; Statistical variance ; Statistics ; Unbiased estimators</subject><ispartof>Biometrika, 1996-12, Vol.83 (4), p.791-800</ispartof><rights>Copyright 1996 Biometrika Trust</rights><rights>1997 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3500-8179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2337283$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2337283$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2838361$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02686947$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>GOFFINET, BRUNO</creatorcontrib><creatorcontrib>WALLACH, DANIEL</creatorcontrib><title>Optimised importance sampling quantile estimation</title><title>Biometrika</title><description>This paper considers the use of an auxiliary variable X* to estimate quantiles of a test statistic X; X* may be an asymptotic expansion of X, or a simplified version which ignores some of the covariance structure. The proposed estimator involves three stages. First a large sample is drawn, and X* is evaluated. Then a first subsample is drawn, X and X* are evaluated and the conditional distribution of X given X* is estimated. Then a second subsample is drawn with weighting which is optimised for this conditional distribution, and for a particular quantile. From this subsample, an importance sampling estimator of the quantile is obtained. The resulting estimator is shown to have substantially lower mean squared error than the conventional estimator, and to be reasonably robust both to errors in the model for the conditional distribution and to the quantile assumed for the optimisation. An example in genetics is given.</description><subject>Approximation</subject><subject>Chromosomes</subject><subject>Distribution theory</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Importance sampling Mixture model</subject><subject>Life Sciences</subject><subject>Mathematics</subject><subject>Monte Carlo</subject><subject>Population estimates</subject><subject>Probability and statistics</subject><subject>QTL</subject><subject>Quantile estimation</subject><subject>Quantitative trait loci</subject><subject>Ratio test</subject><subject>Sampling distributions</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Unbiased estimators</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpFjz1PwzAQhi0EEqUwszBkYGFIa8ffY1VRglRUBpAQi-UkF-qSL2KD4N-TKqhMp7vnuTu9CF0SPCNY03nm2hrCXNEZm0lNjtCEMMFiygk-RhOMsYgpY-wUnXm_27eCiwkimy642nkoIld3bR9sk0Pkbd1VrnmLPj5tE1wFEfhBs8G1zTk6KW3l4eKvTtHz6vZpmcbrzd39crGOt4nkIZZZwpiQYBUIQoDQUmpQNsupKIXCoGieYaUTSAooJWheWFIqnheCacWJoFN0M97d2sp0_fC9_zGtdSZdrM1-hhOhhGbyiwzu9eh21ue2KvshhfOHrURRRcVeuxq1nQ9t_48plYMy4HjEzgf4PmDbvxshqeQmfXk1j5o9PCzTleH0F3bMbk8</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>GOFFINET, BRUNO</creator><creator>WALLACH, DANIEL</creator><general>Oxford University Press</general><general>Biometrika Trust</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3500-8179</orcidid></search><sort><creationdate>19961201</creationdate><title>Optimised importance sampling quantile estimation</title><author>GOFFINET, BRUNO ; WALLACH, DANIEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h275t-7b24467ea8e611e13f79e8abc36f680e83cb0892e2def7e95da1f85cd64985163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Approximation</topic><topic>Chromosomes</topic><topic>Distribution theory</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Importance sampling Mixture model</topic><topic>Life Sciences</topic><topic>Mathematics</topic><topic>Monte Carlo</topic><topic>Population estimates</topic><topic>Probability and statistics</topic><topic>QTL</topic><topic>Quantile estimation</topic><topic>Quantitative trait loci</topic><topic>Ratio test</topic><topic>Sampling distributions</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Unbiased estimators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOFFINET, BRUNO</creatorcontrib><creatorcontrib>WALLACH, DANIEL</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOFFINET, BRUNO</au><au>WALLACH, DANIEL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimised importance sampling quantile estimation</atitle><jtitle>Biometrika</jtitle><date>1996-12-01</date><risdate>1996</risdate><volume>83</volume><issue>4</issue><spage>791</spage><epage>800</epage><pages>791-800</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>This paper considers the use of an auxiliary variable X* to estimate quantiles of a test statistic X; X* may be an asymptotic expansion of X, or a simplified version which ignores some of the covariance structure. The proposed estimator involves three stages. First a large sample is drawn, and X* is evaluated. Then a first subsample is drawn, X and X* are evaluated and the conditional distribution of X given X* is estimated. Then a second subsample is drawn with weighting which is optimised for this conditional distribution, and for a particular quantile. From this subsample, an importance sampling estimator of the quantile is obtained. The resulting estimator is shown to have substantially lower mean squared error than the conventional estimator, and to be reasonably robust both to errors in the model for the conditional distribution and to the quantile assumed for the optimisation. An example in genetics is given.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/83.4.791</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3500-8179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 1996-12, Vol.83 (4), p.791-800
issn 0006-3444
1464-3510
language eng
recordid cdi_hal_primary_oai_HAL_hal_02686947v1
source Oxford Journals Online; JSTOR Archival Journals
subjects Approximation
Chromosomes
Distribution theory
Estimators
Exact sciences and technology
Importance sampling Mixture model
Life Sciences
Mathematics
Monte Carlo
Population estimates
Probability and statistics
QTL
Quantile estimation
Quantitative trait loci
Ratio test
Sampling distributions
Sampling theory, sample surveys
Sciences and techniques of general use
Simulation
Statistical variance
Statistics
Unbiased estimators
title Optimised importance sampling quantile estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimised%20importance%20sampling%20quantile%20estimation&rft.jtitle=Biometrika&rft.au=GOFFINET,%20BRUNO&rft.date=1996-12-01&rft.volume=83&rft.issue=4&rft.spage=791&rft.epage=800&rft.pages=791-800&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/83.4.791&rft_dat=%3Cjstor_hal_p%3E2337283%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h275t-7b24467ea8e611e13f79e8abc36f680e83cb0892e2def7e95da1f85cd64985163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2337283&rfr_iscdi=true