Loading…

Pheromone-triggered orientation flight of male moths can be disrupted by trifluoromethyl ketones

In a wind tunnel trifluoromethyl ketones (TFMKs) have been found to disrupt the orientation flight of male moths to pheromone sources (virgin females or synthetic pheromone). This is demonstrated by comparison of the flight parameters of the Egyptian armyworm Spodoptera littoralis and the Mediterran...

Full description

Saved in:
Bibliographic Details
Published in:Chemical senses 1999-10, Vol.24 (5), p.473-480
Main Authors: BAU, J, MARTINEZ, D, RENOU, M, GUERRERO, A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a wind tunnel trifluoromethyl ketones (TFMKs) have been found to disrupt the orientation flight of male moths to pheromone sources (virgin females or synthetic pheromone). This is demonstrated by comparison of the flight parameters of the Egyptian armyworm Spodoptera littoralis and the Mediterranean corn borer Sesamia nonagrioides, which had been topically treated with TFMKs, with those calculated for untreated insects. Inhibition occurred in all types of behavior and that of the source contact has been quantified and found to be dose-dependent. The same effect has also been noticed in Mediterranean corn borer males flying to an attraction source consisting of mixtures of (Z)-11-hexadecenyl trifluoromethyl ketone (8), a closely related analogue of the major component of the pheromone, and the natural pheromone blend. The most active TFMKs are those closest in structure to the natural pheromone, along with those chemicals which easily hydrate in solution, such as the beta-thiosubstituted derivatives. Along with the previously reported reduction of catches in the field, our results suggest the possible application of these chemicals in future new pest control strategies.
ISSN:0379-864X
1464-3553
1464-3553
DOI:10.1093/chemse/24.5.473