Loading…
Association of the 5'HS4 sequence of the chicken β-globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits
Whatever its field of application, animal transgenesis aims at a high level of reproducible and stable transgene expression. In the case of xenotransplantation, prevention of hyperacute rejection of grafts of animal origin requires the use of organs expressing human inhibitors of complement activati...
Saved in:
Published in: | Transgenic research 1999-06, Vol.8 (3), p.223-235 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c262t-cd4fa9beaffe8547ef9376a8fa34d2602315535c61cd1890e3d5b944139f6cf33 |
---|---|
cites | |
container_end_page | 235 |
container_issue | 3 |
container_start_page | 223 |
container_title | Transgenic research |
container_volume | 8 |
creator | TABOIT-DAMERON, F MALASSAGNE, B VIGLIETTA, C PUISSANT, C LEROUX-COYAU, M CHEREAU, C ATTAL, J WEILL, B HOUDEBINE, L.-M |
description | Whatever its field of application, animal transgenesis aims at a high level of reproducible and stable transgene expression. In the case of xenotransplantation, prevention of hyperacute rejection of grafts of animal origin requires the use of organs expressing human inhibitors of complement activation such as CD55 (DAF) and CD59. Pigs transgenic for these molecules have been produced, but with low and variable levels of expression. In order to improve cDNA expression, a vector containing the 5'HS4 region from the LCR of the chicken beta-globin locus and the promoter and the first intron from the human EF1 alpha gene, was used to co-express human CD55 and CD59 cDNAs in transgenic rabbits. The transgenic lines with the 5'HS4 region displayed dramatically enhanced CD55 and CD59 mRNA concentrations in brain, heart, kidney, liver, lung, muscle, spleen and aortic endothelial cells in comparison with the transgenic lines without the 5'HS4 region. In the absence of the 5'HS4 region, only some of the transgenic lines displayed specific mRNAs and at low levels. Human CD55 and CD59 proteins were detectable in mononuclear cells from transgenic rabbits although at a lower level than in human mononuclear cells. On the other hand, primary aortic endothelial cells from a bi-transgenic line were very efficiently protected in vitro against human complement-dependent lysis. Transgenic rabbits harbouring the two human inhibitors of complement activation, CD55 and CD59, can therefore be used as new models in xenotransplantation. Moreover, the vector containing the 5'HS4 region from the LCR of the chicken beta-globin locus seems appropriate not only for xenotransplantation but also for any other studies involving transgenic animals in which cDNAs have to be expressed at a high level in all cell types. |
doi_str_mv | 10.1023/A:1008919925303 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02693736v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17387429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-cd4fa9beaffe8547ef9376a8fa34d2602315535c61cd1890e3d5b944139f6cf33</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCmRvyAVFxCPgjduLeom3LIq3gAJwjxxlvDFl7Gzt8_Cz4FZz6m_CyWzhymtHo0aOZdxB6QslLShh_1VxQQmpFlWKCE34PLaioeKG4rO-jBVGSFXVN1Qk6jfETIXuYP0QnlJRVXSq2QL-aGINxOrngcbA4DYDF-ep9iSPczOAN3E3N4Mxn8Pj2Z7EZQ-c8HoOZIzbBpymMeILN3vHVpQEP81Z7fHVNb3_gDXjAuylsQ4IJO9_PBiKeO3czuxSyQPseD24zYPi2myDG4yYHx_JSiD9EbhQ2l2-bmB04TdrHbHYGT7rrXIqP0AOrxwiPj_UMfby--rBcFet3r98sm3VhmGSpMH1ptepAWwu1KCuwildS11bzsmcyZ0qF4MJIanpaKwK8F50qS8qVlcZyfoZeHLyDHtvd5LZ6-t4G7dpVs273M8JkVnL5hWb2-YHN5-cwY2q3LhoYR-0hX95WhDAq2f9BWvG6KpnK4NMjOHdb6P8ucPfQDDw7AjoaPdqck3HxH0eVJFzw30KgsQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17387429</pqid></control><display><type>article</type><title>Association of the 5'HS4 sequence of the chicken β-globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits</title><source>Springer Nature</source><creator>TABOIT-DAMERON, F ; MALASSAGNE, B ; VIGLIETTA, C ; PUISSANT, C ; LEROUX-COYAU, M ; CHEREAU, C ; ATTAL, J ; WEILL, B ; HOUDEBINE, L.-M</creator><creatorcontrib>TABOIT-DAMERON, F ; MALASSAGNE, B ; VIGLIETTA, C ; PUISSANT, C ; LEROUX-COYAU, M ; CHEREAU, C ; ATTAL, J ; WEILL, B ; HOUDEBINE, L.-M</creatorcontrib><description>Whatever its field of application, animal transgenesis aims at a high level of reproducible and stable transgene expression. In the case of xenotransplantation, prevention of hyperacute rejection of grafts of animal origin requires the use of organs expressing human inhibitors of complement activation such as CD55 (DAF) and CD59. Pigs transgenic for these molecules have been produced, but with low and variable levels of expression. In order to improve cDNA expression, a vector containing the 5'HS4 region from the LCR of the chicken beta-globin locus and the promoter and the first intron from the human EF1 alpha gene, was used to co-express human CD55 and CD59 cDNAs in transgenic rabbits. The transgenic lines with the 5'HS4 region displayed dramatically enhanced CD55 and CD59 mRNA concentrations in brain, heart, kidney, liver, lung, muscle, spleen and aortic endothelial cells in comparison with the transgenic lines without the 5'HS4 region. In the absence of the 5'HS4 region, only some of the transgenic lines displayed specific mRNAs and at low levels. Human CD55 and CD59 proteins were detectable in mononuclear cells from transgenic rabbits although at a lower level than in human mononuclear cells. On the other hand, primary aortic endothelial cells from a bi-transgenic line were very efficiently protected in vitro against human complement-dependent lysis. Transgenic rabbits harbouring the two human inhibitors of complement activation, CD55 and CD59, can therefore be used as new models in xenotransplantation. Moreover, the vector containing the 5'HS4 region from the LCR of the chicken beta-globin locus seems appropriate not only for xenotransplantation but also for any other studies involving transgenic animals in which cDNAs have to be expressed at a high level in all cell types.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1023/A:1008919925303</identifier><identifier>PMID: 10478492</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Animals ; Animals, Genetically Modified ; b-globin ; Biological and medical sciences ; Biotechnology ; CD55 antigen ; CD55 Antigens - biosynthesis ; CD55 Antigens - genetics ; CD59 antigen ; CD59 Antigens - biosynthesis ; CD59 Antigens - genetics ; Chickens - genetics ; CHO Cells ; Complement Inactivator Proteins ; Cricetinae ; decay-accelerating factor ; DNA, Complementary - genetics ; EF1^a gene ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Genetic engineering ; Genetic technics ; Globins - chemistry ; Globins - genetics ; Graft Rejection - prevention & control ; Humans ; Life Sciences ; Locus Control Region ; Methods. Procedures. Technologies ; Peptide Elongation Factor 1 ; Peptide Elongation Factors - genetics ; Promoter Regions, Genetic ; Rabbits ; Transgenic animals and transgenic plants ; Transgenic plants ; Transplantation, Heterologous</subject><ispartof>Transgenic research, 1999-06, Vol.8 (3), p.223-235</ispartof><rights>2000 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-cd4fa9beaffe8547ef9376a8fa34d2602315535c61cd1890e3d5b944139f6cf33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1196035$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10478492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02693736$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>TABOIT-DAMERON, F</creatorcontrib><creatorcontrib>MALASSAGNE, B</creatorcontrib><creatorcontrib>VIGLIETTA, C</creatorcontrib><creatorcontrib>PUISSANT, C</creatorcontrib><creatorcontrib>LEROUX-COYAU, M</creatorcontrib><creatorcontrib>CHEREAU, C</creatorcontrib><creatorcontrib>ATTAL, J</creatorcontrib><creatorcontrib>WEILL, B</creatorcontrib><creatorcontrib>HOUDEBINE, L.-M</creatorcontrib><title>Association of the 5'HS4 sequence of the chicken β-globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><description>Whatever its field of application, animal transgenesis aims at a high level of reproducible and stable transgene expression. In the case of xenotransplantation, prevention of hyperacute rejection of grafts of animal origin requires the use of organs expressing human inhibitors of complement activation such as CD55 (DAF) and CD59. Pigs transgenic for these molecules have been produced, but with low and variable levels of expression. In order to improve cDNA expression, a vector containing the 5'HS4 region from the LCR of the chicken beta-globin locus and the promoter and the first intron from the human EF1 alpha gene, was used to co-express human CD55 and CD59 cDNAs in transgenic rabbits. The transgenic lines with the 5'HS4 region displayed dramatically enhanced CD55 and CD59 mRNA concentrations in brain, heart, kidney, liver, lung, muscle, spleen and aortic endothelial cells in comparison with the transgenic lines without the 5'HS4 region. In the absence of the 5'HS4 region, only some of the transgenic lines displayed specific mRNAs and at low levels. Human CD55 and CD59 proteins were detectable in mononuclear cells from transgenic rabbits although at a lower level than in human mononuclear cells. On the other hand, primary aortic endothelial cells from a bi-transgenic line were very efficiently protected in vitro against human complement-dependent lysis. Transgenic rabbits harbouring the two human inhibitors of complement activation, CD55 and CD59, can therefore be used as new models in xenotransplantation. Moreover, the vector containing the 5'HS4 region from the LCR of the chicken beta-globin locus seems appropriate not only for xenotransplantation but also for any other studies involving transgenic animals in which cDNAs have to be expressed at a high level in all cell types.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>b-globin</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>CD55 antigen</subject><subject>CD55 Antigens - biosynthesis</subject><subject>CD55 Antigens - genetics</subject><subject>CD59 antigen</subject><subject>CD59 Antigens - biosynthesis</subject><subject>CD59 Antigens - genetics</subject><subject>Chickens - genetics</subject><subject>CHO Cells</subject><subject>Complement Inactivator Proteins</subject><subject>Cricetinae</subject><subject>decay-accelerating factor</subject><subject>DNA, Complementary - genetics</subject><subject>EF1^a gene</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>Globins - chemistry</subject><subject>Globins - genetics</subject><subject>Graft Rejection - prevention & control</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Locus Control Region</subject><subject>Methods. Procedures. Technologies</subject><subject>Peptide Elongation Factor 1</subject><subject>Peptide Elongation Factors - genetics</subject><subject>Promoter Regions, Genetic</subject><subject>Rabbits</subject><subject>Transgenic animals and transgenic plants</subject><subject>Transgenic plants</subject><subject>Transplantation, Heterologous</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EotvCmRvyAVFxCPgjduLeom3LIq3gAJwjxxlvDFl7Gzt8_Cz4FZz6m_CyWzhymtHo0aOZdxB6QslLShh_1VxQQmpFlWKCE34PLaioeKG4rO-jBVGSFXVN1Qk6jfETIXuYP0QnlJRVXSq2QL-aGINxOrngcbA4DYDF-ep9iSPczOAN3E3N4Mxn8Pj2Z7EZQ-c8HoOZIzbBpymMeILN3vHVpQEP81Z7fHVNb3_gDXjAuylsQ4IJO9_PBiKeO3czuxSyQPseD24zYPi2myDG4yYHx_JSiD9EbhQ2l2-bmB04TdrHbHYGT7rrXIqP0AOrxwiPj_UMfby--rBcFet3r98sm3VhmGSpMH1ptepAWwu1KCuwildS11bzsmcyZ0qF4MJIanpaKwK8F50qS8qVlcZyfoZeHLyDHtvd5LZ6-t4G7dpVs273M8JkVnL5hWb2-YHN5-cwY2q3LhoYR-0hX95WhDAq2f9BWvG6KpnK4NMjOHdb6P8ucPfQDDw7AjoaPdqck3HxH0eVJFzw30KgsQA</recordid><startdate>199906</startdate><enddate>199906</enddate><creator>TABOIT-DAMERON, F</creator><creator>MALASSAGNE, B</creator><creator>VIGLIETTA, C</creator><creator>PUISSANT, C</creator><creator>LEROUX-COYAU, M</creator><creator>CHEREAU, C</creator><creator>ATTAL, J</creator><creator>WEILL, B</creator><creator>HOUDEBINE, L.-M</creator><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>199906</creationdate><title>Association of the 5'HS4 sequence of the chicken β-globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits</title><author>TABOIT-DAMERON, F ; MALASSAGNE, B ; VIGLIETTA, C ; PUISSANT, C ; LEROUX-COYAU, M ; CHEREAU, C ; ATTAL, J ; WEILL, B ; HOUDEBINE, L.-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-cd4fa9beaffe8547ef9376a8fa34d2602315535c61cd1890e3d5b944139f6cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>b-globin</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>CD55 antigen</topic><topic>CD55 Antigens - biosynthesis</topic><topic>CD55 Antigens - genetics</topic><topic>CD59 antigen</topic><topic>CD59 Antigens - biosynthesis</topic><topic>CD59 Antigens - genetics</topic><topic>Chickens - genetics</topic><topic>CHO Cells</topic><topic>Complement Inactivator Proteins</topic><topic>Cricetinae</topic><topic>decay-accelerating factor</topic><topic>DNA, Complementary - genetics</topic><topic>EF1^a gene</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>Globins - chemistry</topic><topic>Globins - genetics</topic><topic>Graft Rejection - prevention & control</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Locus Control Region</topic><topic>Methods. Procedures. Technologies</topic><topic>Peptide Elongation Factor 1</topic><topic>Peptide Elongation Factors - genetics</topic><topic>Promoter Regions, Genetic</topic><topic>Rabbits</topic><topic>Transgenic animals and transgenic plants</topic><topic>Transgenic plants</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TABOIT-DAMERON, F</creatorcontrib><creatorcontrib>MALASSAGNE, B</creatorcontrib><creatorcontrib>VIGLIETTA, C</creatorcontrib><creatorcontrib>PUISSANT, C</creatorcontrib><creatorcontrib>LEROUX-COYAU, M</creatorcontrib><creatorcontrib>CHEREAU, C</creatorcontrib><creatorcontrib>ATTAL, J</creatorcontrib><creatorcontrib>WEILL, B</creatorcontrib><creatorcontrib>HOUDEBINE, L.-M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TABOIT-DAMERON, F</au><au>MALASSAGNE, B</au><au>VIGLIETTA, C</au><au>PUISSANT, C</au><au>LEROUX-COYAU, M</au><au>CHEREAU, C</au><au>ATTAL, J</au><au>WEILL, B</au><au>HOUDEBINE, L.-M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association of the 5'HS4 sequence of the chicken β-globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits</atitle><jtitle>Transgenic research</jtitle><addtitle>Transgenic Res</addtitle><date>1999-06</date><risdate>1999</risdate><volume>8</volume><issue>3</issue><spage>223</spage><epage>235</epage><pages>223-235</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>Whatever its field of application, animal transgenesis aims at a high level of reproducible and stable transgene expression. In the case of xenotransplantation, prevention of hyperacute rejection of grafts of animal origin requires the use of organs expressing human inhibitors of complement activation such as CD55 (DAF) and CD59. Pigs transgenic for these molecules have been produced, but with low and variable levels of expression. In order to improve cDNA expression, a vector containing the 5'HS4 region from the LCR of the chicken beta-globin locus and the promoter and the first intron from the human EF1 alpha gene, was used to co-express human CD55 and CD59 cDNAs in transgenic rabbits. The transgenic lines with the 5'HS4 region displayed dramatically enhanced CD55 and CD59 mRNA concentrations in brain, heart, kidney, liver, lung, muscle, spleen and aortic endothelial cells in comparison with the transgenic lines without the 5'HS4 region. In the absence of the 5'HS4 region, only some of the transgenic lines displayed specific mRNAs and at low levels. Human CD55 and CD59 proteins were detectable in mononuclear cells from transgenic rabbits although at a lower level than in human mononuclear cells. On the other hand, primary aortic endothelial cells from a bi-transgenic line were very efficiently protected in vitro against human complement-dependent lysis. Transgenic rabbits harbouring the two human inhibitors of complement activation, CD55 and CD59, can therefore be used as new models in xenotransplantation. Moreover, the vector containing the 5'HS4 region from the LCR of the chicken beta-globin locus seems appropriate not only for xenotransplantation but also for any other studies involving transgenic animals in which cDNAs have to be expressed at a high level in all cell types.</abstract><cop>Dordrecht</cop><pub>Springer</pub><pmid>10478492</pmid><doi>10.1023/A:1008919925303</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8819 |
ispartof | Transgenic research, 1999-06, Vol.8 (3), p.223-235 |
issn | 0962-8819 1573-9368 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02693736v1 |
source | Springer Nature |
subjects | Animals Animals, Genetically Modified b-globin Biological and medical sciences Biotechnology CD55 antigen CD55 Antigens - biosynthesis CD55 Antigens - genetics CD59 antigen CD59 Antigens - biosynthesis CD59 Antigens - genetics Chickens - genetics CHO Cells Complement Inactivator Proteins Cricetinae decay-accelerating factor DNA, Complementary - genetics EF1^a gene Fundamental and applied biological sciences. Psychology Gene Expression Regulation Genetic engineering Genetic technics Globins - chemistry Globins - genetics Graft Rejection - prevention & control Humans Life Sciences Locus Control Region Methods. Procedures. Technologies Peptide Elongation Factor 1 Peptide Elongation Factors - genetics Promoter Regions, Genetic Rabbits Transgenic animals and transgenic plants Transgenic plants Transplantation, Heterologous |
title | Association of the 5'HS4 sequence of the chicken β-globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20of%20the%205'HS4%20sequence%20of%20the%20chicken%20%CE%B2-globin%20locus%20control%20region%20with%20human%20EF1%CE%B1%20gene%20promoter%20induces%20ubiquitous%20and%20high%20expression%20of%20human%20CD55%20and%20CD59%20cDNAs%20in%20transgenic%20rabbits&rft.jtitle=Transgenic%20research&rft.au=TABOIT-DAMERON,%20F&rft.date=1999-06&rft.volume=8&rft.issue=3&rft.spage=223&rft.epage=235&rft.pages=223-235&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1023/A:1008919925303&rft_dat=%3Cproquest_hal_p%3E17387429%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-cd4fa9beaffe8547ef9376a8fa34d2602315535c61cd1890e3d5b944139f6cf33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17387429&rft_id=info:pmid/10478492&rfr_iscdi=true |