Loading…

Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora

Erwinia herbicola Eh252 is a nonpathogenic epiphytic bacterium that reduces fire blight incidence when sprayed onto apple blossoms before inoculation with Erwinia amylovora, the causal agent of fire blight. Eh252 was found to produce on minimal medium an antibiotic that inhibited the growth of E. am...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Bacteriology 1992-05, Vol.174 (9), p.2785-2796
Main Authors: VANNESTE, J. L, YU, J, BEER, S. V
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Erwinia herbicola Eh252 is a nonpathogenic epiphytic bacterium that reduces fire blight incidence when sprayed onto apple blossoms before inoculation with Erwinia amylovora, the causal agent of fire blight. Eh252 was found to produce on minimal medium an antibiotic that inhibited the growth of E. amylovora. This antibiotic was inactivated by histidine but not by Fe(II), was sensitive to proteolytic enzymes, and showed a narrow host range of activity. To determine the role of this antibiotic in the control of fire blight, two prototrophic Tn5-induced mutants, 10:12 and 17:12, that had lost their ability to inhibit E. amylovora on plates (Ant- mutants) were compared with the wild-type strain for their ability to suppress fire blight in immature pear fruits. The two mutants had single Tn5 insertions in the chromosome; although they grew in immature pear fruits at a rate similar to that of the wild-type strain, neither of these mutants suppressed fire blight as well as Eh252 did. The Tn5-containing fragment isolated from 10:12 was used to mutagenize Eh252 by marker exchange. Derivatives that acquired the Tn5-containing fragment by homologous recombination lost the ability to inhibit E. amylovora on minimal medium. Furthermore, the three Ant- derivatives tested were also affected in their ability to inhibit E. amylovora in immature pear fruits. The results obtained suggest that antibiotic production is a determinant of the biological control of E. amylovora by Eh252, but that another mechanism(s) is involved.
ISSN:0021-9193
1098-5530
1067-8832
DOI:10.1128/jb.174.9.2785-2796.1992