Loading…
Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis
Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces i...
Saved in:
Published in: | Plant physiology (Bethesda) 1992-09, Vol.100 (1), p.205-209 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 209 |
container_issue | 1 |
container_start_page | 205 |
container_title | Plant physiology (Bethesda) |
container_volume | 100 |
creator | Cochard, H Cruiziat, P Tyree, M.T |
description | Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using "pressure-volume" analysis |
doi_str_mv | 10.1104/pp.100.1.205 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02706267v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4274614</jstor_id><sourcerecordid>4274614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-7dd057d0da8f09171969d3efcf63b017495fa5ecf9c5456c6ac302b0dae4a4713</originalsourceid><addsrcrecordid>eNpdkU-P0zAQxSMEYsvCjRNCyDeERMrYseOEA9JqxbJIlThAz5brOI1XSWw8SaR-FL4tLi3Ln4v9NO83b2RPlj2nsKYU-LsQ1hSSXjMQD7IVFQXLmeDVw2wFkDRUVX2RPUG8AwBaUP44u6BlKVjN5Sr7sUVLfEuCRze5xZIQLeKcDjJ5YnHSu95hR5a5H23UO9e76UDMHBeL78nNHKfORoJzCD5OpPWRpALRLuZobePGPekOwacaOiR6bIgbQu-Mnpwf8Rf_e2C--H4eUu-o-0Oin2aPWt2jfXa-L7Ptzcdv17f55sunz9dXm9xwClMumwaEbKDRVQs1lbQu66awrWnLYgdU8lq0WljT1kZwUZpSmwLYLvGWay5pcZl9OOWGeTfYxthxirpXIbpBx4Py2ql_ndF1au8XRUEKUVQp4M0poPuv7fZqo441YBJKVsrlOOz1eVj03-f0vWpwaGzf69H6GZUsCl4xYCyRb0-kiR4x2vY-moI6Ll6FkGTSKi0-4a_-fsUf-LzpBLw8AXc4-XjvcyZ5SXmyX5zsVnul99Gh2n6tk1tVsvgJjuHAIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733482022</pqid></control><display><type>article</type><title>Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Cochard, H ; Cruiziat, P ; Tyree, M.T</creator><creatorcontrib>Cochard, H ; Cruiziat, P ; Tyree, M.T</creatorcontrib><description>Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using "pressure-volume" analysis</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.100.1.205</identifier><identifier>PMID: 16652947</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>AIR ; Air pressure ; AIRE ; BRANCHE ; Cavitation flow ; Dehydration ; Embolisms ; Environmental and Stress Physiology ; Genetics ; Hydraulic conductivity ; Life Sciences ; Moisture content ; Plants genetics ; POPULUS DELTOIDES ; POTENTIEL HYDRIQUE ; PRESION ; PRESSION ; Pressure chambers ; PROPIEDADES FISICO-QUIMICAS ; PROPRIETE PHYSICOCHIMIQUE ; RAMAS ; SALIX ALBA ; Stems ; TALLO ; TENSION DE ABSORCION ; TIGE ; Water pressure ; XILEMA ; Xylem ; XYLEME</subject><ispartof>Plant physiology (Bethesda), 1992-09, Vol.100 (1), p.205-209</ispartof><rights>Copyright 1992 American Society of Plant Physiologists</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4274614$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4274614$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16652947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02706267$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cochard, H</creatorcontrib><creatorcontrib>Cruiziat, P</creatorcontrib><creatorcontrib>Tyree, M.T</creatorcontrib><title>Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using "pressure-volume" analysis</description><subject>AIR</subject><subject>Air pressure</subject><subject>AIRE</subject><subject>BRANCHE</subject><subject>Cavitation flow</subject><subject>Dehydration</subject><subject>Embolisms</subject><subject>Environmental and Stress Physiology</subject><subject>Genetics</subject><subject>Hydraulic conductivity</subject><subject>Life Sciences</subject><subject>Moisture content</subject><subject>Plants genetics</subject><subject>POPULUS DELTOIDES</subject><subject>POTENTIEL HYDRIQUE</subject><subject>PRESION</subject><subject>PRESSION</subject><subject>Pressure chambers</subject><subject>PROPIEDADES FISICO-QUIMICAS</subject><subject>PROPRIETE PHYSICOCHIMIQUE</subject><subject>RAMAS</subject><subject>SALIX ALBA</subject><subject>Stems</subject><subject>TALLO</subject><subject>TENSION DE ABSORCION</subject><subject>TIGE</subject><subject>Water pressure</subject><subject>XILEMA</subject><subject>Xylem</subject><subject>XYLEME</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpdkU-P0zAQxSMEYsvCjRNCyDeERMrYseOEA9JqxbJIlThAz5brOI1XSWw8SaR-FL4tLi3Ln4v9NO83b2RPlj2nsKYU-LsQ1hSSXjMQD7IVFQXLmeDVw2wFkDRUVX2RPUG8AwBaUP44u6BlKVjN5Sr7sUVLfEuCRze5xZIQLeKcDjJ5YnHSu95hR5a5H23UO9e76UDMHBeL78nNHKfORoJzCD5OpPWRpALRLuZobePGPekOwacaOiR6bIgbQu-Mnpwf8Rf_e2C--H4eUu-o-0Oin2aPWt2jfXa-L7Ptzcdv17f55sunz9dXm9xwClMumwaEbKDRVQs1lbQu66awrWnLYgdU8lq0WljT1kZwUZpSmwLYLvGWay5pcZl9OOWGeTfYxthxirpXIbpBx4Py2ql_ndF1au8XRUEKUVQp4M0poPuv7fZqo441YBJKVsrlOOz1eVj03-f0vWpwaGzf69H6GZUsCl4xYCyRb0-kiR4x2vY-moI6Ll6FkGTSKi0-4a_-fsUf-LzpBLw8AXc4-XjvcyZ5SXmyX5zsVnul99Gh2n6tk1tVsvgJjuHAIQ</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Cochard, H</creator><creator>Cruiziat, P</creator><creator>Tyree, M.T</creator><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>19920901</creationdate><title>Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis</title><author>Cochard, H ; Cruiziat, P ; Tyree, M.T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-7dd057d0da8f09171969d3efcf63b017495fa5ecf9c5456c6ac302b0dae4a4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>AIR</topic><topic>Air pressure</topic><topic>AIRE</topic><topic>BRANCHE</topic><topic>Cavitation flow</topic><topic>Dehydration</topic><topic>Embolisms</topic><topic>Environmental and Stress Physiology</topic><topic>Genetics</topic><topic>Hydraulic conductivity</topic><topic>Life Sciences</topic><topic>Moisture content</topic><topic>Plants genetics</topic><topic>POPULUS DELTOIDES</topic><topic>POTENTIEL HYDRIQUE</topic><topic>PRESION</topic><topic>PRESSION</topic><topic>Pressure chambers</topic><topic>PROPIEDADES FISICO-QUIMICAS</topic><topic>PROPRIETE PHYSICOCHIMIQUE</topic><topic>RAMAS</topic><topic>SALIX ALBA</topic><topic>Stems</topic><topic>TALLO</topic><topic>TENSION DE ABSORCION</topic><topic>TIGE</topic><topic>Water pressure</topic><topic>XILEMA</topic><topic>Xylem</topic><topic>XYLEME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochard, H</creatorcontrib><creatorcontrib>Cruiziat, P</creatorcontrib><creatorcontrib>Tyree, M.T</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochard, H</au><au>Cruiziat, P</au><au>Tyree, M.T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1992-09-01</date><risdate>1992</risdate><volume>100</volume><issue>1</issue><spage>205</spage><epage>209</epage><pages>205-209</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using "pressure-volume" analysis</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>16652947</pmid><doi>10.1104/pp.100.1.205</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 1992-09, Vol.100 (1), p.205-209 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02706267v1 |
source | JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | AIR Air pressure AIRE BRANCHE Cavitation flow Dehydration Embolisms Environmental and Stress Physiology Genetics Hydraulic conductivity Life Sciences Moisture content Plants genetics POPULUS DELTOIDES POTENTIEL HYDRIQUE PRESION PRESSION Pressure chambers PROPIEDADES FISICO-QUIMICAS PROPRIETE PHYSICOCHIMIQUE RAMAS SALIX ALBA Stems TALLO TENSION DE ABSORCION TIGE Water pressure XILEMA Xylem XYLEME |
title | Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20positive%20pressures%20to%20establish%20vulnerability%20curves:%20Further%20support%20for%20the%20air-seeding%20hypothesis%20and%20implications%20for%20pressure-volume%20analysis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Cochard,%20H&rft.date=1992-09-01&rft.volume=100&rft.issue=1&rft.spage=205&rft.epage=209&rft.pages=205-209&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.100.1.205&rft_dat=%3Cjstor_pubme%3E4274614%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-7dd057d0da8f09171969d3efcf63b017495fa5ecf9c5456c6ac302b0dae4a4713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733482022&rft_id=info:pmid/16652947&rft_jstor_id=4274614&rfr_iscdi=true |