Loading…

Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis

Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces i...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 1992-09, Vol.100 (1), p.205-209
Main Authors: Cochard, H, Cruiziat, P, Tyree, M.T
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 209
container_issue 1
container_start_page 205
container_title Plant physiology (Bethesda)
container_volume 100
creator Cochard, H
Cruiziat, P
Tyree, M.T
description Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using "pressure-volume" analysis
doi_str_mv 10.1104/pp.100.1.205
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02706267v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4274614</jstor_id><sourcerecordid>4274614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-7dd057d0da8f09171969d3efcf63b017495fa5ecf9c5456c6ac302b0dae4a4713</originalsourceid><addsrcrecordid>eNpdkU-P0zAQxSMEYsvCjRNCyDeERMrYseOEA9JqxbJIlThAz5brOI1XSWw8SaR-FL4tLi3Ln4v9NO83b2RPlj2nsKYU-LsQ1hSSXjMQD7IVFQXLmeDVw2wFkDRUVX2RPUG8AwBaUP44u6BlKVjN5Sr7sUVLfEuCRze5xZIQLeKcDjJ5YnHSu95hR5a5H23UO9e76UDMHBeL78nNHKfORoJzCD5OpPWRpALRLuZobePGPekOwacaOiR6bIgbQu-Mnpwf8Rf_e2C--H4eUu-o-0Oin2aPWt2jfXa-L7Ptzcdv17f55sunz9dXm9xwClMumwaEbKDRVQs1lbQu66awrWnLYgdU8lq0WljT1kZwUZpSmwLYLvGWay5pcZl9OOWGeTfYxthxirpXIbpBx4Py2ql_ndF1au8XRUEKUVQp4M0poPuv7fZqo441YBJKVsrlOOz1eVj03-f0vWpwaGzf69H6GZUsCl4xYCyRb0-kiR4x2vY-moI6Ll6FkGTSKi0-4a_-fsUf-LzpBLw8AXc4-XjvcyZ5SXmyX5zsVnul99Gh2n6tk1tVsvgJjuHAIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733482022</pqid></control><display><type>article</type><title>Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Cochard, H ; Cruiziat, P ; Tyree, M.T</creator><creatorcontrib>Cochard, H ; Cruiziat, P ; Tyree, M.T</creatorcontrib><description>Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using "pressure-volume" analysis</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.100.1.205</identifier><identifier>PMID: 16652947</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>AIR ; Air pressure ; AIRE ; BRANCHE ; Cavitation flow ; Dehydration ; Embolisms ; Environmental and Stress Physiology ; Genetics ; Hydraulic conductivity ; Life Sciences ; Moisture content ; Plants genetics ; POPULUS DELTOIDES ; POTENTIEL HYDRIQUE ; PRESION ; PRESSION ; Pressure chambers ; PROPIEDADES FISICO-QUIMICAS ; PROPRIETE PHYSICOCHIMIQUE ; RAMAS ; SALIX ALBA ; Stems ; TALLO ; TENSION DE ABSORCION ; TIGE ; Water pressure ; XILEMA ; Xylem ; XYLEME</subject><ispartof>Plant physiology (Bethesda), 1992-09, Vol.100 (1), p.205-209</ispartof><rights>Copyright 1992 American Society of Plant Physiologists</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4274614$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4274614$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16652947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02706267$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cochard, H</creatorcontrib><creatorcontrib>Cruiziat, P</creatorcontrib><creatorcontrib>Tyree, M.T</creatorcontrib><title>Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using "pressure-volume" analysis</description><subject>AIR</subject><subject>Air pressure</subject><subject>AIRE</subject><subject>BRANCHE</subject><subject>Cavitation flow</subject><subject>Dehydration</subject><subject>Embolisms</subject><subject>Environmental and Stress Physiology</subject><subject>Genetics</subject><subject>Hydraulic conductivity</subject><subject>Life Sciences</subject><subject>Moisture content</subject><subject>Plants genetics</subject><subject>POPULUS DELTOIDES</subject><subject>POTENTIEL HYDRIQUE</subject><subject>PRESION</subject><subject>PRESSION</subject><subject>Pressure chambers</subject><subject>PROPIEDADES FISICO-QUIMICAS</subject><subject>PROPRIETE PHYSICOCHIMIQUE</subject><subject>RAMAS</subject><subject>SALIX ALBA</subject><subject>Stems</subject><subject>TALLO</subject><subject>TENSION DE ABSORCION</subject><subject>TIGE</subject><subject>Water pressure</subject><subject>XILEMA</subject><subject>Xylem</subject><subject>XYLEME</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpdkU-P0zAQxSMEYsvCjRNCyDeERMrYseOEA9JqxbJIlThAz5brOI1XSWw8SaR-FL4tLi3Ln4v9NO83b2RPlj2nsKYU-LsQ1hSSXjMQD7IVFQXLmeDVw2wFkDRUVX2RPUG8AwBaUP44u6BlKVjN5Sr7sUVLfEuCRze5xZIQLeKcDjJ5YnHSu95hR5a5H23UO9e76UDMHBeL78nNHKfORoJzCD5OpPWRpALRLuZobePGPekOwacaOiR6bIgbQu-Mnpwf8Rf_e2C--H4eUu-o-0Oin2aPWt2jfXa-L7Ptzcdv17f55sunz9dXm9xwClMumwaEbKDRVQs1lbQu66awrWnLYgdU8lq0WljT1kZwUZpSmwLYLvGWay5pcZl9OOWGeTfYxthxirpXIbpBx4Py2ql_ndF1au8XRUEKUVQp4M0poPuv7fZqo441YBJKVsrlOOz1eVj03-f0vWpwaGzf69H6GZUsCl4xYCyRb0-kiR4x2vY-moI6Ll6FkGTSKi0-4a_-fsUf-LzpBLw8AXc4-XjvcyZ5SXmyX5zsVnul99Gh2n6tk1tVsvgJjuHAIQ</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Cochard, H</creator><creator>Cruiziat, P</creator><creator>Tyree, M.T</creator><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>19920901</creationdate><title>Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis</title><author>Cochard, H ; Cruiziat, P ; Tyree, M.T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-7dd057d0da8f09171969d3efcf63b017495fa5ecf9c5456c6ac302b0dae4a4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>AIR</topic><topic>Air pressure</topic><topic>AIRE</topic><topic>BRANCHE</topic><topic>Cavitation flow</topic><topic>Dehydration</topic><topic>Embolisms</topic><topic>Environmental and Stress Physiology</topic><topic>Genetics</topic><topic>Hydraulic conductivity</topic><topic>Life Sciences</topic><topic>Moisture content</topic><topic>Plants genetics</topic><topic>POPULUS DELTOIDES</topic><topic>POTENTIEL HYDRIQUE</topic><topic>PRESION</topic><topic>PRESSION</topic><topic>Pressure chambers</topic><topic>PROPIEDADES FISICO-QUIMICAS</topic><topic>PROPRIETE PHYSICOCHIMIQUE</topic><topic>RAMAS</topic><topic>SALIX ALBA</topic><topic>Stems</topic><topic>TALLO</topic><topic>TENSION DE ABSORCION</topic><topic>TIGE</topic><topic>Water pressure</topic><topic>XILEMA</topic><topic>Xylem</topic><topic>XYLEME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochard, H</creatorcontrib><creatorcontrib>Cruiziat, P</creatorcontrib><creatorcontrib>Tyree, M.T</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochard, H</au><au>Cruiziat, P</au><au>Tyree, M.T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1992-09-01</date><risdate>1992</risdate><volume>100</volume><issue>1</issue><spage>205</spage><epage>209</epage><pages>205-209</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using "pressure-volume" analysis</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>16652947</pmid><doi>10.1104/pp.100.1.205</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 1992-09, Vol.100 (1), p.205-209
issn 0032-0889
1532-2548
language eng
recordid cdi_hal_primary_oai_HAL_hal_02706267v1
source JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects AIR
Air pressure
AIRE
BRANCHE
Cavitation flow
Dehydration
Embolisms
Environmental and Stress Physiology
Genetics
Hydraulic conductivity
Life Sciences
Moisture content
Plants genetics
POPULUS DELTOIDES
POTENTIEL HYDRIQUE
PRESION
PRESSION
Pressure chambers
PROPIEDADES FISICO-QUIMICAS
PROPRIETE PHYSICOCHIMIQUE
RAMAS
SALIX ALBA
Stems
TALLO
TENSION DE ABSORCION
TIGE
Water pressure
XILEMA
Xylem
XYLEME
title Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure-volume analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20positive%20pressures%20to%20establish%20vulnerability%20curves:%20Further%20support%20for%20the%20air-seeding%20hypothesis%20and%20implications%20for%20pressure-volume%20analysis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Cochard,%20H&rft.date=1992-09-01&rft.volume=100&rft.issue=1&rft.spage=205&rft.epage=209&rft.pages=205-209&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.100.1.205&rft_dat=%3Cjstor_pubme%3E4274614%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-7dd057d0da8f09171969d3efcf63b017495fa5ecf9c5456c6ac302b0dae4a4713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733482022&rft_id=info:pmid/16652947&rft_jstor_id=4274614&rfr_iscdi=true