Loading…
Global carbon emissions from biomass burning in the 20th century
We used a new, 100‐year, 1 × 1° global fire map and a carbon cycle model (CASA) to provide a yearly gridded estimate of the temporal trend in carbon emissions due to wildfires through the 20th century. 2700–3325 Tg C y−1 burn at the end of the 20th century, compared to 1500–2700 Tg C y−1 at the begi...
Saved in:
Published in: | Geophysical research letters 2006-01, Vol.33 (1), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We used a new, 100‐year, 1 × 1° global fire map and a carbon cycle model (CASA) to provide a yearly gridded estimate of the temporal trend in carbon emissions due to wildfires through the 20th century. 2700–3325 Tg C y−1 burn at the end of the 20th century, compared to 1500–2700 Tg C y−1 at the beginning, with increasing uncertainty moving backward in time. There have been major changes in the regional distribution of emissions from fires, as a consequence of i) increased burning in tropical savannas and ii) a switch of emissions from temperate and boreal forests towards the tropics. The frequently‐used assumption that pre‐industrial emissions were 10% of present biomass burning is clearly inadequate, in terms of both the total amount and the spatial distribution of combustion. |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1029/2005GL024707 |