Loading…

Relative regular Riemann–Hilbert correspondence

On the product of a complex manifold X by a complex curve S considered as a parameter space, we show a Riemann–Hilbert correspondence between regular holonomic relative D‐modules (respectively, complexes) on the one hand and relative perverse complexes (respectively, S‐C‐constructible complexes) on...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the London Mathematical Society 2021-03, Vol.122 (3), p.434-457
Main Authors: Fiorot, Luisa, Monteiro Fernandes, Teresa, Sabbah, Claude
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3072-93c699da69b04201dfaeb685c4116e9e082b9b85630e90d1d5a9afff5434f38f3
cites cdi_FETCH-LOGICAL-c3072-93c699da69b04201dfaeb685c4116e9e082b9b85630e90d1d5a9afff5434f38f3
container_end_page 457
container_issue 3
container_start_page 434
container_title Proceedings of the London Mathematical Society
container_volume 122
creator Fiorot, Luisa
Monteiro Fernandes, Teresa
Sabbah, Claude
description On the product of a complex manifold X by a complex curve S considered as a parameter space, we show a Riemann–Hilbert correspondence between regular holonomic relative D‐modules (respectively, complexes) on the one hand and relative perverse complexes (respectively, S‐C‐constructible complexes) on the other hand.
doi_str_mv 10.1112/plms.12362
format article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02889098v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3072-93c699da69b04201dfaeb685c4116e9e082b9b85630e90d1d5a9afff5434f38f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsbv6BbhanvJZmYLEtRK4woVcFdyMy86EhmpmRqpTv_wT_0S2wdcenqwuXcuziMHSOMEZGfLULdjZELxXfYAKWChEv5tMsGAFwmCjHdZwdd9woASoh0wHBOwS2rFY0iPb8FF0fzimrXNF8fn7Mq5BSXo6KNkbpF25TUFHTI9rwLHR395pA9Xl48TGdJdnt1PZ1kSSHgnCdGFMqY0imTg-SApXeUK50WElGRIdA8N7lOlQAyUGKZOuO896kU0gvtxZCd9L8vLthFrGoX17Z1lZ1NMrvtgGttwOgVbtjTni1i23WR_N8AwW7F2K0Y-yNmA2MPv1eB1v-Q9i67ue833xhTZgI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relative regular Riemann–Hilbert correspondence</title><source>Wiley</source><creator>Fiorot, Luisa ; Monteiro Fernandes, Teresa ; Sabbah, Claude</creator><creatorcontrib>Fiorot, Luisa ; Monteiro Fernandes, Teresa ; Sabbah, Claude</creatorcontrib><description>On the product of a complex manifold X by a complex curve S considered as a parameter space, we show a Riemann–Hilbert correspondence between regular holonomic relative D‐modules (respectively, complexes) on the one hand and relative perverse complexes (respectively, S‐C‐constructible complexes) on the other hand.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12362</identifier><language>eng</language><publisher>London Mathematical Society</publisher><subject>14F10 ; 32C38 ; 35A27 ; 58J15 (primary) ; Algebraic Geometry ; Mathematics</subject><ispartof>Proceedings of the London Mathematical Society, 2021-03, Vol.122 (3), p.434-457</ispartof><rights>2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3072-93c699da69b04201dfaeb685c4116e9e082b9b85630e90d1d5a9afff5434f38f3</citedby><cites>FETCH-LOGICAL-c3072-93c699da69b04201dfaeb685c4116e9e082b9b85630e90d1d5a9afff5434f38f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://polytechnique.hal.science/hal-02889098$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiorot, Luisa</creatorcontrib><creatorcontrib>Monteiro Fernandes, Teresa</creatorcontrib><creatorcontrib>Sabbah, Claude</creatorcontrib><title>Relative regular Riemann–Hilbert correspondence</title><title>Proceedings of the London Mathematical Society</title><description>On the product of a complex manifold X by a complex curve S considered as a parameter space, we show a Riemann–Hilbert correspondence between regular holonomic relative D‐modules (respectively, complexes) on the one hand and relative perverse complexes (respectively, S‐C‐constructible complexes) on the other hand.</description><subject>14F10</subject><subject>32C38</subject><subject>35A27</subject><subject>58J15 (primary)</subject><subject>Algebraic Geometry</subject><subject>Mathematics</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKsbv6BbhanvJZmYLEtRK4woVcFdyMy86EhmpmRqpTv_wT_0S2wdcenqwuXcuziMHSOMEZGfLULdjZELxXfYAKWChEv5tMsGAFwmCjHdZwdd9woASoh0wHBOwS2rFY0iPb8FF0fzimrXNF8fn7Mq5BSXo6KNkbpF25TUFHTI9rwLHR395pA9Xl48TGdJdnt1PZ1kSSHgnCdGFMqY0imTg-SApXeUK50WElGRIdA8N7lOlQAyUGKZOuO896kU0gvtxZCd9L8vLthFrGoX17Z1lZ1NMrvtgGttwOgVbtjTni1i23WR_N8AwW7F2K0Y-yNmA2MPv1eB1v-Q9i67ue833xhTZgI</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Fiorot, Luisa</creator><creator>Monteiro Fernandes, Teresa</creator><creator>Sabbah, Claude</creator><general>London Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>202103</creationdate><title>Relative regular Riemann–Hilbert correspondence</title><author>Fiorot, Luisa ; Monteiro Fernandes, Teresa ; Sabbah, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3072-93c699da69b04201dfaeb685c4116e9e082b9b85630e90d1d5a9afff5434f38f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14F10</topic><topic>32C38</topic><topic>35A27</topic><topic>58J15 (primary)</topic><topic>Algebraic Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiorot, Luisa</creatorcontrib><creatorcontrib>Monteiro Fernandes, Teresa</creatorcontrib><creatorcontrib>Sabbah, Claude</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiorot, Luisa</au><au>Monteiro Fernandes, Teresa</au><au>Sabbah, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative regular Riemann–Hilbert correspondence</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2021-03</date><risdate>2021</risdate><volume>122</volume><issue>3</issue><spage>434</spage><epage>457</epage><pages>434-457</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>On the product of a complex manifold X by a complex curve S considered as a parameter space, we show a Riemann–Hilbert correspondence between regular holonomic relative D‐modules (respectively, complexes) on the one hand and relative perverse complexes (respectively, S‐C‐constructible complexes) on the other hand.</abstract><pub>London Mathematical Society</pub><doi>10.1112/plms.12362</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2021-03, Vol.122 (3), p.434-457
issn 0024-6115
1460-244X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02889098v1
source Wiley
subjects 14F10
32C38
35A27
58J15 (primary)
Algebraic Geometry
Mathematics
title Relative regular Riemann–Hilbert correspondence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20regular%20Riemann%E2%80%93Hilbert%20correspondence&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Fiorot,%20Luisa&rft.date=2021-03&rft.volume=122&rft.issue=3&rft.spage=434&rft.epage=457&rft.pages=434-457&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12362&rft_dat=%3Cwiley_hal_p%3EPLMS12362%3C/wiley_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3072-93c699da69b04201dfaeb685c4116e9e082b9b85630e90d1d5a9afff5434f38f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true