Loading…

Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation

In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temper...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2020-09, Vol.9 (9), p.1365
Main Authors: Gupta, Aakashdeep, Nidhin, K, Balanethiram, Suresh, Yadav, Shon, Chakravorty, Anjan, Fregonese, Sebastien, Zimmer, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3
cites cdi_FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3
container_end_page
container_issue 9
container_start_page 1365
container_title Electronics (Basel)
container_volume 9
creator Gupta, Aakashdeep
Nidhin, K
Balanethiram, Suresh
Yadav, Shon
Chakravorty, Anjan
Fregonese, Sebastien
Zimmer, Thomas
description In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temperature model of part-I by introducing a parameter to account for the upward heat flow through BEOL. Accordingly the coupling coefficient models for bipolar transistors with and without trench isolations are updated. The resulting modeling approach takes as inputs the dimensions of emitter fingers, shallow and deep trench isolation, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are first validated against 3D TCAD simulations including the effect of BEOL followed by validation against measured data obtained from state-of-art multifinger SiGe HBTs of different emitter geometries.
doi_str_mv 10.3390/electronics9091365
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02920343v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438127034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3</originalsourceid><addsrcrecordid>eNplkM1KAzEURoMoWGpfwFXAlYvR_E0zcVeLtYWKgtVtSDOpTUknY5IRfXszVETwbu7l43C4fACcY3RFqUDXxhmdgm-sjgIJTMflERgQxEUhiCDHf-5TMIpxh_JkrKJoAOrnpJLVcLU1Ya8cnPqudbZ5gzOlkw8R2gY-dC7ZYpZTE-Ctbb1TAa6CaqKNPXMDn1RIcLEo7j5bE-zeNCmrXpWzdZb75gycbJSLZvSzh-Bldreazovl4_1iOlkWmpY0FYQrWtfI4LIkY1xzYwRXgilSE8wIxWsqNGbI0LLi43XFueGiZowjzrDaUE2H4PLg3Son2_yICl_SKyvnk6XsM5Q7QJTRD5zZiwPbBv_emZjkznehye9JwmiFCe_BISAHSgcfYzCbXy1Gsi9f_i-ffgPxGXlW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438127034</pqid></control><display><type>article</type><title>Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation</title><source>Publicly Available Content (ProQuest)</source><creator>Gupta, Aakashdeep ; Nidhin, K ; Balanethiram, Suresh ; Yadav, Shon ; Chakravorty, Anjan ; Fregonese, Sebastien ; Zimmer, Thomas</creator><creatorcontrib>Gupta, Aakashdeep ; Nidhin, K ; Balanethiram, Suresh ; Yadav, Shon ; Chakravorty, Anjan ; Fregonese, Sebastien ; Zimmer, Thomas</creatorcontrib><description>In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temperature model of part-I by introducing a parameter to account for the upward heat flow through BEOL. Accordingly the coupling coefficient models for bipolar transistors with and without trench isolations are updated. The resulting modeling approach takes as inputs the dimensions of emitter fingers, shallow and deep trench isolation, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are first validated against 3D TCAD simulations including the effect of BEOL followed by validation against measured data obtained from state-of-art multifinger SiGe HBTs of different emitter geometries.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9091365</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Computer simulation ; Coupling coefficients ; Emitters ; Engineering Sciences ; Heat conductivity ; Heat transmission ; Heterojunction bipolar transistors ; Micro and nanotechnologies ; Microelectronics ; Semiconductor devices ; Silicon germanides ; Simulation ; Substrates ; Temperature dependence ; Thermal conductivity ; Thermal coupling ; Three dimensional models ; Transistors</subject><ispartof>Electronics (Basel), 2020-09, Vol.9 (9), p.1365</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3</citedby><cites>FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3</cites><orcidid>0000-0002-1829-2633 ; 0000-0002-4311-0969 ; 0000-0002-7375-9056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2438127034/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2438127034?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74872</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02920343$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Aakashdeep</creatorcontrib><creatorcontrib>Nidhin, K</creatorcontrib><creatorcontrib>Balanethiram, Suresh</creatorcontrib><creatorcontrib>Yadav, Shon</creatorcontrib><creatorcontrib>Chakravorty, Anjan</creatorcontrib><creatorcontrib>Fregonese, Sebastien</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><title>Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation</title><title>Electronics (Basel)</title><description>In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temperature model of part-I by introducing a parameter to account for the upward heat flow through BEOL. Accordingly the coupling coefficient models for bipolar transistors with and without trench isolations are updated. The resulting modeling approach takes as inputs the dimensions of emitter fingers, shallow and deep trench isolation, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are first validated against 3D TCAD simulations including the effect of BEOL followed by validation against measured data obtained from state-of-art multifinger SiGe HBTs of different emitter geometries.</description><subject>Computer simulation</subject><subject>Coupling coefficients</subject><subject>Emitters</subject><subject>Engineering Sciences</subject><subject>Heat conductivity</subject><subject>Heat transmission</subject><subject>Heterojunction bipolar transistors</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Semiconductor devices</subject><subject>Silicon germanides</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal coupling</subject><subject>Three dimensional models</subject><subject>Transistors</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkM1KAzEURoMoWGpfwFXAlYvR_E0zcVeLtYWKgtVtSDOpTUknY5IRfXszVETwbu7l43C4fACcY3RFqUDXxhmdgm-sjgIJTMflERgQxEUhiCDHf-5TMIpxh_JkrKJoAOrnpJLVcLU1Ya8cnPqudbZ5gzOlkw8R2gY-dC7ZYpZTE-Ctbb1TAa6CaqKNPXMDn1RIcLEo7j5bE-zeNCmrXpWzdZb75gycbJSLZvSzh-Bldreazovl4_1iOlkWmpY0FYQrWtfI4LIkY1xzYwRXgilSE8wIxWsqNGbI0LLi43XFueGiZowjzrDaUE2H4PLg3Son2_yICl_SKyvnk6XsM5Q7QJTRD5zZiwPbBv_emZjkznehye9JwmiFCe_BISAHSgcfYzCbXy1Gsi9f_i-ffgPxGXlW</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Gupta, Aakashdeep</creator><creator>Nidhin, K</creator><creator>Balanethiram, Suresh</creator><creator>Yadav, Shon</creator><creator>Chakravorty, Anjan</creator><creator>Fregonese, Sebastien</creator><creator>Zimmer, Thomas</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid><orcidid>https://orcid.org/0000-0002-4311-0969</orcidid><orcidid>https://orcid.org/0000-0002-7375-9056</orcidid></search><sort><creationdate>20200901</creationdate><title>Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation</title><author>Gupta, Aakashdeep ; Nidhin, K ; Balanethiram, Suresh ; Yadav, Shon ; Chakravorty, Anjan ; Fregonese, Sebastien ; Zimmer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Coupling coefficients</topic><topic>Emitters</topic><topic>Engineering Sciences</topic><topic>Heat conductivity</topic><topic>Heat transmission</topic><topic>Heterojunction bipolar transistors</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Semiconductor devices</topic><topic>Silicon germanides</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal coupling</topic><topic>Three dimensional models</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Aakashdeep</creatorcontrib><creatorcontrib>Nidhin, K</creatorcontrib><creatorcontrib>Balanethiram, Suresh</creatorcontrib><creatorcontrib>Yadav, Shon</creatorcontrib><creatorcontrib>Chakravorty, Anjan</creatorcontrib><creatorcontrib>Fregonese, Sebastien</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Aakashdeep</au><au>Nidhin, K</au><au>Balanethiram, Suresh</au><au>Yadav, Shon</au><au>Chakravorty, Anjan</au><au>Fregonese, Sebastien</au><au>Zimmer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>9</volume><issue>9</issue><spage>1365</spage><pages>1365-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temperature model of part-I by introducing a parameter to account for the upward heat flow through BEOL. Accordingly the coupling coefficient models for bipolar transistors with and without trench isolations are updated. The resulting modeling approach takes as inputs the dimensions of emitter fingers, shallow and deep trench isolation, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are first validated against 3D TCAD simulations including the effect of BEOL followed by validation against measured data obtained from state-of-art multifinger SiGe HBTs of different emitter geometries.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9091365</doi><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid><orcidid>https://orcid.org/0000-0002-4311-0969</orcidid><orcidid>https://orcid.org/0000-0002-7375-9056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2020-09, Vol.9 (9), p.1365
issn 2079-9292
2079-9292
language eng
recordid cdi_hal_primary_oai_HAL_hal_02920343v1
source Publicly Available Content (ProQuest)
subjects Computer simulation
Coupling coefficients
Emitters
Engineering Sciences
Heat conductivity
Heat transmission
Heterojunction bipolar transistors
Micro and nanotechnologies
Microelectronics
Semiconductor devices
Silicon germanides
Simulation
Substrates
Temperature dependence
Thermal conductivity
Thermal coupling
Three dimensional models
Transistors
title Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20Thermal%20Coupling%20Factors%20in%20Multi-Finger%20Bipolar%20Transistors:%20Part%20II-Experimental%20Validation&rft.jtitle=Electronics%20(Basel)&rft.au=Gupta,%20Aakashdeep&rft.date=2020-09-01&rft.volume=9&rft.issue=9&rft.spage=1365&rft.pages=1365-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9091365&rft_dat=%3Cproquest_hal_p%3E2438127034%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438127034&rft_id=info:pmid/&rfr_iscdi=true