Loading…
Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation
In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temper...
Saved in:
Published in: | Electronics (Basel) 2020-09, Vol.9 (9), p.1365 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3 |
container_end_page | |
container_issue | 9 |
container_start_page | 1365 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Gupta, Aakashdeep Nidhin, K Balanethiram, Suresh Yadav, Shon Chakravorty, Anjan Fregonese, Sebastien Zimmer, Thomas |
description | In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temperature model of part-I by introducing a parameter to account for the upward heat flow through BEOL. Accordingly the coupling coefficient models for bipolar transistors with and without trench isolations are updated. The resulting modeling approach takes as inputs the dimensions of emitter fingers, shallow and deep trench isolation, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are first validated against 3D TCAD simulations including the effect of BEOL followed by validation against measured data obtained from state-of-art multifinger SiGe HBTs of different emitter geometries. |
doi_str_mv | 10.3390/electronics9091365 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02920343v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438127034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3</originalsourceid><addsrcrecordid>eNplkM1KAzEURoMoWGpfwFXAlYvR_E0zcVeLtYWKgtVtSDOpTUknY5IRfXszVETwbu7l43C4fACcY3RFqUDXxhmdgm-sjgIJTMflERgQxEUhiCDHf-5TMIpxh_JkrKJoAOrnpJLVcLU1Ya8cnPqudbZ5gzOlkw8R2gY-dC7ZYpZTE-Ctbb1TAa6CaqKNPXMDn1RIcLEo7j5bE-zeNCmrXpWzdZb75gycbJSLZvSzh-Bldreazovl4_1iOlkWmpY0FYQrWtfI4LIkY1xzYwRXgilSE8wIxWsqNGbI0LLi43XFueGiZowjzrDaUE2H4PLg3Son2_yICl_SKyvnk6XsM5Q7QJTRD5zZiwPbBv_emZjkznehye9JwmiFCe_BISAHSgcfYzCbXy1Gsi9f_i-ffgPxGXlW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438127034</pqid></control><display><type>article</type><title>Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation</title><source>Publicly Available Content (ProQuest)</source><creator>Gupta, Aakashdeep ; Nidhin, K ; Balanethiram, Suresh ; Yadav, Shon ; Chakravorty, Anjan ; Fregonese, Sebastien ; Zimmer, Thomas</creator><creatorcontrib>Gupta, Aakashdeep ; Nidhin, K ; Balanethiram, Suresh ; Yadav, Shon ; Chakravorty, Anjan ; Fregonese, Sebastien ; Zimmer, Thomas</creatorcontrib><description>In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temperature model of part-I by introducing a parameter to account for the upward heat flow through BEOL. Accordingly the coupling coefficient models for bipolar transistors with and without trench isolations are updated. The resulting modeling approach takes as inputs the dimensions of emitter fingers, shallow and deep trench isolation, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are first validated against 3D TCAD simulations including the effect of BEOL followed by validation against measured data obtained from state-of-art multifinger SiGe HBTs of different emitter geometries.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9091365</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Computer simulation ; Coupling coefficients ; Emitters ; Engineering Sciences ; Heat conductivity ; Heat transmission ; Heterojunction bipolar transistors ; Micro and nanotechnologies ; Microelectronics ; Semiconductor devices ; Silicon germanides ; Simulation ; Substrates ; Temperature dependence ; Thermal conductivity ; Thermal coupling ; Three dimensional models ; Transistors</subject><ispartof>Electronics (Basel), 2020-09, Vol.9 (9), p.1365</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3</citedby><cites>FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3</cites><orcidid>0000-0002-1829-2633 ; 0000-0002-4311-0969 ; 0000-0002-7375-9056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2438127034/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2438127034?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74872</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02920343$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Aakashdeep</creatorcontrib><creatorcontrib>Nidhin, K</creatorcontrib><creatorcontrib>Balanethiram, Suresh</creatorcontrib><creatorcontrib>Yadav, Shon</creatorcontrib><creatorcontrib>Chakravorty, Anjan</creatorcontrib><creatorcontrib>Fregonese, Sebastien</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><title>Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation</title><title>Electronics (Basel)</title><description>In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temperature model of part-I by introducing a parameter to account for the upward heat flow through BEOL. Accordingly the coupling coefficient models for bipolar transistors with and without trench isolations are updated. The resulting modeling approach takes as inputs the dimensions of emitter fingers, shallow and deep trench isolation, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are first validated against 3D TCAD simulations including the effect of BEOL followed by validation against measured data obtained from state-of-art multifinger SiGe HBTs of different emitter geometries.</description><subject>Computer simulation</subject><subject>Coupling coefficients</subject><subject>Emitters</subject><subject>Engineering Sciences</subject><subject>Heat conductivity</subject><subject>Heat transmission</subject><subject>Heterojunction bipolar transistors</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Semiconductor devices</subject><subject>Silicon germanides</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal coupling</subject><subject>Three dimensional models</subject><subject>Transistors</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkM1KAzEURoMoWGpfwFXAlYvR_E0zcVeLtYWKgtVtSDOpTUknY5IRfXszVETwbu7l43C4fACcY3RFqUDXxhmdgm-sjgIJTMflERgQxEUhiCDHf-5TMIpxh_JkrKJoAOrnpJLVcLU1Ya8cnPqudbZ5gzOlkw8R2gY-dC7ZYpZTE-Ctbb1TAa6CaqKNPXMDn1RIcLEo7j5bE-zeNCmrXpWzdZb75gycbJSLZvSzh-Bldreazovl4_1iOlkWmpY0FYQrWtfI4LIkY1xzYwRXgilSE8wIxWsqNGbI0LLi43XFueGiZowjzrDaUE2H4PLg3Son2_yICl_SKyvnk6XsM5Q7QJTRD5zZiwPbBv_emZjkznehye9JwmiFCe_BISAHSgcfYzCbXy1Gsi9f_i-ffgPxGXlW</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Gupta, Aakashdeep</creator><creator>Nidhin, K</creator><creator>Balanethiram, Suresh</creator><creator>Yadav, Shon</creator><creator>Chakravorty, Anjan</creator><creator>Fregonese, Sebastien</creator><creator>Zimmer, Thomas</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid><orcidid>https://orcid.org/0000-0002-4311-0969</orcidid><orcidid>https://orcid.org/0000-0002-7375-9056</orcidid></search><sort><creationdate>20200901</creationdate><title>Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation</title><author>Gupta, Aakashdeep ; Nidhin, K ; Balanethiram, Suresh ; Yadav, Shon ; Chakravorty, Anjan ; Fregonese, Sebastien ; Zimmer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Coupling coefficients</topic><topic>Emitters</topic><topic>Engineering Sciences</topic><topic>Heat conductivity</topic><topic>Heat transmission</topic><topic>Heterojunction bipolar transistors</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Semiconductor devices</topic><topic>Silicon germanides</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal coupling</topic><topic>Three dimensional models</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Aakashdeep</creatorcontrib><creatorcontrib>Nidhin, K</creatorcontrib><creatorcontrib>Balanethiram, Suresh</creatorcontrib><creatorcontrib>Yadav, Shon</creatorcontrib><creatorcontrib>Chakravorty, Anjan</creatorcontrib><creatorcontrib>Fregonese, Sebastien</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Aakashdeep</au><au>Nidhin, K</au><au>Balanethiram, Suresh</au><au>Yadav, Shon</au><au>Chakravorty, Anjan</au><au>Fregonese, Sebastien</au><au>Zimmer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>9</volume><issue>9</issue><spage>1365</spage><pages>1365-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temperature model of part-I by introducing a parameter to account for the upward heat flow through BEOL. Accordingly the coupling coefficient models for bipolar transistors with and without trench isolations are updated. The resulting modeling approach takes as inputs the dimensions of emitter fingers, shallow and deep trench isolation, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are first validated against 3D TCAD simulations including the effect of BEOL followed by validation against measured data obtained from state-of-art multifinger SiGe HBTs of different emitter geometries.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9091365</doi><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid><orcidid>https://orcid.org/0000-0002-4311-0969</orcidid><orcidid>https://orcid.org/0000-0002-7375-9056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-09, Vol.9 (9), p.1365 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02920343v1 |
source | Publicly Available Content (ProQuest) |
subjects | Computer simulation Coupling coefficients Emitters Engineering Sciences Heat conductivity Heat transmission Heterojunction bipolar transistors Micro and nanotechnologies Microelectronics Semiconductor devices Silicon germanides Simulation Substrates Temperature dependence Thermal conductivity Thermal coupling Three dimensional models Transistors |
title | Static Thermal Coupling Factors in Multi-Finger Bipolar Transistors: Part II-Experimental Validation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20Thermal%20Coupling%20Factors%20in%20Multi-Finger%20Bipolar%20Transistors:%20Part%20II-Experimental%20Validation&rft.jtitle=Electronics%20(Basel)&rft.au=Gupta,%20Aakashdeep&rft.date=2020-09-01&rft.volume=9&rft.issue=9&rft.spage=1365&rft.pages=1365-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9091365&rft_dat=%3Cproquest_hal_p%3E2438127034%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-27a3dd0e155261d7ee97a94a2d214231b39c140e35876b877e79d4470741af3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438127034&rft_id=info:pmid/&rfr_iscdi=true |