Loading…
The planktonic stages of the salmon louse (Lepeophtheirus salmonis) are tolerant of end-of-century pCO(2) concentrations
The copepod Lepeophtheirus salmonis is an obligate ectoparasite of salmonids. Salmon lice are major pests in salmon aquaculture and due to its economic impact Lepeophtheirus salmonis is one of the most well studied species of marine parasite. However, there is limited understanding of how increased...
Saved in:
Published in: | PeerJ (San Francisco, CA) CA), 2019-10, Vol.7 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The copepod Lepeophtheirus salmonis is an obligate ectoparasite of salmonids. Salmon lice are major pests in salmon aquaculture and due to its economic impact Lepeophtheirus salmonis is one of the most well studied species of marine parasite. However, there is limited understanding of how increased concentration of pCO(2) associated with ocean acidification will impact host-parasite relationships. We investigated the effects of increased pCO(2) on growth and metabolic rates in the planktonic stages, rearing L. salmonis from eggs to 12 days post hatch copepodids under three treatment levels: Control (416 mu atm), Mid (747 mu atm), and High (942 mu atm). The pCO(2) treatment had a significant effect on oxygen consumption rate with the High treatment animals exhibiting the greatest respiration. The treatments did not have a significant effect on the other biological endpoints measured (carbon, nitrogen, lipid volume, and fatty acid content). The results indicate that L. salmonis have mechanisms to compensate for increased concentration of pCO(2) and that populations will be tolerant of projected future ocean acidification scenarios. The work reported here also describes catabolism during the lecithotrophic development of L. salmonis, information that is not currently available to parameterize models of dispersal and viability of the planktonic free-living stages. |
---|---|
ISSN: | 2167-8359 2167-8359 |
DOI: | 10.7717/peerj.7810 |