Loading…

Parameters influencing queen body mass and their importance as determined by machine learning in honey bees (Apis mellifera carnica)

Most parameters describing queen bee quality are reflected in the queen’s body mass, which is in turn considered a robust measure and the best indicator of queen quality. State-of-the-art machine learning was used for the first time to jointly evaluate both biological and rearing parameters influenc...

Full description

Saved in:
Bibliographic Details
Published in:Apidologie 2019-10, Vol.50 (5), p.745-757
Main Authors: Prešern, Janez, Smodiš Škerl, Maja Ivana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-c6fe46d451f813fd47e36bd21d58e143fb4018c527b720643b589900cb8570153
cites cdi_FETCH-LOGICAL-c397t-c6fe46d451f813fd47e36bd21d58e143fb4018c527b720643b589900cb8570153
container_end_page 757
container_issue 5
container_start_page 745
container_title Apidologie
container_volume 50
creator Prešern, Janez
Smodiš Škerl, Maja Ivana
description Most parameters describing queen bee quality are reflected in the queen’s body mass, which is in turn considered a robust measure and the best indicator of queen quality. State-of-the-art machine learning was used for the first time to jointly evaluate both biological and rearing parameters influencing queen body mass. Three different models were developed using different combinations of parameters. Regardless of the model composition, we achieved high precision of classification. The parameters “ovary mass” and “breeder” were the most important factors for model predictions. Differences in rearing practices and vegetation were masked by “breeder,” demonstrating the pitfall of this method. Separate analysis confirmed the importance of the time spent in the hive after mating and the phytogeographical region as an indirect indication of food sources. Rearing practices together with phytogeographical information are not enough to explain variation in queen body mass, yet they can contribute to the prediction of queen body mass if “breeder” is excluded from the model.
doi_str_mv 10.1007/s13592-019-00683-y
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02925836v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311233973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-c6fe46d451f813fd47e36bd21d58e143fb4018c527b720643b589900cb8570153</originalsourceid><addsrcrecordid>eNp9kc1r3DAQxUVpoNuk_0BPgl6Sg5PRly0fl9B8wEJ6SM9ClsdZBVveSt6A7_3DI8clveU0w_B7j8c8Qr4zuGQA1VViQtW8AFYXAKUWxfyJbBivq6IuK_2ZbACkLLQU6gv5mtIzAONayQ35-8tGO-CEMVEfuv6IwfnwRP8cEQNtxnamg02J2tDSaY8-Uj8cxjjZ4JDaRNtFOviALW0W1O3zTnu0MSw2PtD9GHCmDWKi59uDT3TAvvcdRkvdQjl7cUZOOtsn_PZvnpLfNz8fr--K3cPt_fV2VzhRV1Phyg5l2UrFOs1E18oKRdm0nLVKI5OiayQw7RSvmopDKUWjdF0DuEarCpgSp-Ri9d3b3hyiH2yczWi9udvuzHIDXnOlRfnCMvtjZQ9xzM9Ik3kejzHkeIYLxrjIkUSm-Eq5OKYUsXu3ZWCWZszajMnNmLdmzJxFYhWlDIcnjP-tP1C9AoaLkZY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311233973</pqid></control><display><type>article</type><title>Parameters influencing queen body mass and their importance as determined by machine learning in honey bees (Apis mellifera carnica)</title><source>Springer Nature</source><creator>Prešern, Janez ; Smodiš Škerl, Maja Ivana</creator><creatorcontrib>Prešern, Janez ; Smodiš Škerl, Maja Ivana</creatorcontrib><description>Most parameters describing queen bee quality are reflected in the queen’s body mass, which is in turn considered a robust measure and the best indicator of queen quality. State-of-the-art machine learning was used for the first time to jointly evaluate both biological and rearing parameters influencing queen body mass. Three different models were developed using different combinations of parameters. Regardless of the model composition, we achieved high precision of classification. The parameters “ovary mass” and “breeder” were the most important factors for model predictions. Differences in rearing practices and vegetation were masked by “breeder,” demonstrating the pitfall of this method. Separate analysis confirmed the importance of the time spent in the hive after mating and the phytogeographical region as an indirect indication of food sources. Rearing practices together with phytogeographical information are not enough to explain variation in queen body mass, yet they can contribute to the prediction of queen body mass if “breeder” is excluded from the model.</description><identifier>ISSN: 0044-8435</identifier><identifier>EISSN: 1297-9678</identifier><identifier>DOI: 10.1007/s13592-019-00683-y</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Animal breeding ; Apis mellifera ; Artificial intelligence ; Bees ; Biomedical and Life Sciences ; Body mass ; Body size ; Entomology ; Food sources ; Learning algorithms ; Life Sciences ; Machine learning ; Mathematical models ; Menopause ; Original Article ; Parameters</subject><ispartof>Apidologie, 2019-10, Vol.50 (5), p.745-757</ispartof><rights>INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019</rights><rights>INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-c6fe46d451f813fd47e36bd21d58e143fb4018c527b720643b589900cb8570153</citedby><cites>FETCH-LOGICAL-c397t-c6fe46d451f813fd47e36bd21d58e143fb4018c527b720643b589900cb8570153</cites><orcidid>0000-0003-2479-6106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02925836$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Prešern, Janez</creatorcontrib><creatorcontrib>Smodiš Škerl, Maja Ivana</creatorcontrib><title>Parameters influencing queen body mass and their importance as determined by machine learning in honey bees (Apis mellifera carnica)</title><title>Apidologie</title><addtitle>Apidologie</addtitle><description>Most parameters describing queen bee quality are reflected in the queen’s body mass, which is in turn considered a robust measure and the best indicator of queen quality. State-of-the-art machine learning was used for the first time to jointly evaluate both biological and rearing parameters influencing queen body mass. Three different models were developed using different combinations of parameters. Regardless of the model composition, we achieved high precision of classification. The parameters “ovary mass” and “breeder” were the most important factors for model predictions. Differences in rearing practices and vegetation were masked by “breeder,” demonstrating the pitfall of this method. Separate analysis confirmed the importance of the time spent in the hive after mating and the phytogeographical region as an indirect indication of food sources. Rearing practices together with phytogeographical information are not enough to explain variation in queen body mass, yet they can contribute to the prediction of queen body mass if “breeder” is excluded from the model.</description><subject>Animal breeding</subject><subject>Apis mellifera</subject><subject>Artificial intelligence</subject><subject>Bees</subject><subject>Biomedical and Life Sciences</subject><subject>Body mass</subject><subject>Body size</subject><subject>Entomology</subject><subject>Food sources</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Menopause</subject><subject>Original Article</subject><subject>Parameters</subject><issn>0044-8435</issn><issn>1297-9678</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1r3DAQxUVpoNuk_0BPgl6Sg5PRly0fl9B8wEJ6SM9ClsdZBVveSt6A7_3DI8clveU0w_B7j8c8Qr4zuGQA1VViQtW8AFYXAKUWxfyJbBivq6IuK_2ZbACkLLQU6gv5mtIzAONayQ35-8tGO-CEMVEfuv6IwfnwRP8cEQNtxnamg02J2tDSaY8-Uj8cxjjZ4JDaRNtFOviALW0W1O3zTnu0MSw2PtD9GHCmDWKi59uDT3TAvvcdRkvdQjl7cUZOOtsn_PZvnpLfNz8fr--K3cPt_fV2VzhRV1Phyg5l2UrFOs1E18oKRdm0nLVKI5OiayQw7RSvmopDKUWjdF0DuEarCpgSp-Ri9d3b3hyiH2yczWi9udvuzHIDXnOlRfnCMvtjZQ9xzM9Ik3kejzHkeIYLxrjIkUSm-Eq5OKYUsXu3ZWCWZszajMnNmLdmzJxFYhWlDIcnjP-tP1C9AoaLkZY</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Prešern, Janez</creator><creator>Smodiš Škerl, Maja Ivana</creator><general>Springer Paris</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2479-6106</orcidid></search><sort><creationdate>20191001</creationdate><title>Parameters influencing queen body mass and their importance as determined by machine learning in honey bees (Apis mellifera carnica)</title><author>Prešern, Janez ; Smodiš Škerl, Maja Ivana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-c6fe46d451f813fd47e36bd21d58e143fb4018c527b720643b589900cb8570153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal breeding</topic><topic>Apis mellifera</topic><topic>Artificial intelligence</topic><topic>Bees</topic><topic>Biomedical and Life Sciences</topic><topic>Body mass</topic><topic>Body size</topic><topic>Entomology</topic><topic>Food sources</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Menopause</topic><topic>Original Article</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prešern, Janez</creatorcontrib><creatorcontrib>Smodiš Škerl, Maja Ivana</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Apidologie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prešern, Janez</au><au>Smodiš Škerl, Maja Ivana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters influencing queen body mass and their importance as determined by machine learning in honey bees (Apis mellifera carnica)</atitle><jtitle>Apidologie</jtitle><stitle>Apidologie</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>50</volume><issue>5</issue><spage>745</spage><epage>757</epage><pages>745-757</pages><issn>0044-8435</issn><eissn>1297-9678</eissn><abstract>Most parameters describing queen bee quality are reflected in the queen’s body mass, which is in turn considered a robust measure and the best indicator of queen quality. State-of-the-art machine learning was used for the first time to jointly evaluate both biological and rearing parameters influencing queen body mass. Three different models were developed using different combinations of parameters. Regardless of the model composition, we achieved high precision of classification. The parameters “ovary mass” and “breeder” were the most important factors for model predictions. Differences in rearing practices and vegetation were masked by “breeder,” demonstrating the pitfall of this method. Separate analysis confirmed the importance of the time spent in the hive after mating and the phytogeographical region as an indirect indication of food sources. Rearing practices together with phytogeographical information are not enough to explain variation in queen body mass, yet they can contribute to the prediction of queen body mass if “breeder” is excluded from the model.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s13592-019-00683-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2479-6106</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8435
ispartof Apidologie, 2019-10, Vol.50 (5), p.745-757
issn 0044-8435
1297-9678
language eng
recordid cdi_hal_primary_oai_HAL_hal_02925836v1
source Springer Nature
subjects Animal breeding
Apis mellifera
Artificial intelligence
Bees
Biomedical and Life Sciences
Body mass
Body size
Entomology
Food sources
Learning algorithms
Life Sciences
Machine learning
Mathematical models
Menopause
Original Article
Parameters
title Parameters influencing queen body mass and their importance as determined by machine learning in honey bees (Apis mellifera carnica)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20influencing%20queen%20body%20mass%20and%20their%20importance%20as%20determined%20by%20machine%20learning%20in%20honey%20bees%20(Apis%20mellifera%20carnica)&rft.jtitle=Apidologie&rft.au=Pre%C5%A1ern,%20Janez&rft.date=2019-10-01&rft.volume=50&rft.issue=5&rft.spage=745&rft.epage=757&rft.pages=745-757&rft.issn=0044-8435&rft.eissn=1297-9678&rft_id=info:doi/10.1007/s13592-019-00683-y&rft_dat=%3Cproquest_hal_p%3E2311233973%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-c6fe46d451f813fd47e36bd21d58e143fb4018c527b720643b589900cb8570153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2311233973&rft_id=info:pmid/&rfr_iscdi=true