Loading…

Robust adaptive fuzzy sliding mode controller for nonlinear uncertain hysteretic systems

This paper deals with the problem of adaptive fuzzy control for a class of nonlinear uncertain systems with hysteresis input. Fuzzy logic systems are employed to approximate the unknown nonlinear behaviors, and the sliding mode technique is used to synthesize an adaptive fuzzy controller. A proporti...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the Institute of Measurement and Control 2020-09, Vol.42 (13), p.2519-2532
Main Authors: Rebai, Aissa, Guesmi, Kamel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with the problem of adaptive fuzzy control for a class of nonlinear uncertain systems with hysteresis input. Fuzzy logic systems are employed to approximate the unknown nonlinear behaviors, and the sliding mode technique is used to synthesize an adaptive fuzzy controller. A proportional integral control term is adopted to reduce the chattering phenomenon engendered by both sliding mode control technique and hysteretic characteristic of the system. The proposed control scheme ensures the boundedness of all closed-loop signals, and forces the tracking error to converge to zero. The main contribution of this work is the development of a control strategy for a class of nonlinear hysteretic systems subject to external disturbances and uncertainties. Two case studies are given to illustrate and to prove the effectiveness of the presented approach.
ISSN:0142-3312
1477-0369
DOI:10.1177/0142331220921024