Loading…

Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions

Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of m...

Full description

Saved in:
Bibliographic Details
Published in:Nature geoscience 2020-02, Vol.13 (2), p.163-169
Main Authors: Laurent, Oscar, Björnsen, Jana, Wotzlaw, Jörn-Frederik, Bretscher, Simone, Pimenta Silva, Manuel, Moyen, Jean-François, Ulmer, Peter, Bachmann, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13
cites cdi_FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13
container_end_page 169
container_issue 2
container_start_page 163
container_title Nature geoscience
container_volume 13
creator Laurent, Oscar
Björnsen, Jana
Wotzlaw, Jörn-Frederik
Bretscher, Simone
Pimenta Silva, Manuel
Moyen, Jean-François
Ulmer, Peter
Bachmann, Olivier
description Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of mafic crust at convergent plate margins. These interpretations implicitly assume that the bulk-rock compositions of TTGs did not change from magma generation in the source to complete crystallization. However, crystal–liquid segregation influences the geochemistry of felsic magmas, as shown by the textural and chemical complementarity between coeval plutons and silicic volcanic rocks in the Phanerozoic Eon. We demonstrate here that Paleoarchean (ca. 3,456 million years old) TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium–lead geochronology. The chemical signature of the dominant trondhjemites, conventionally interpreted as melts generated by high-pressure melting of basalts, reflects the combined accumulation of plagioclase phenocrysts and loss of interstitial liquid that erupted as silicic volcanic rocks. Our results indicate that the entire compositional diversity of TTGs could derive from the upper crustal differentiation of a single, tonalitic magma formed by basalt melting and/or crystallization at
doi_str_mv 10.1038/s41561-019-0520-6
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02934806v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475050878</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13</originalsourceid><addsrcrecordid>eNp9kTtOw0AQhi0EEiFwALqVqCgMsw_bu2UUAUGKRAMVxWpir5ONnNjMOkjpuAbX4yTYMo8KqhmNvn9efxSdc7jiIPV1UDxJeQzcxJAIiNODaMSzRMRgQB9-59qo4-gkhDVACipLRtHzDVK7-nh7D8whVd6Fli0Jt76tfREYkmM57UOLVUw-X7ENLjfIyAVHr7WnwFpsGlewxZ4FX_nc58zRrml9vQ2n0VGJVXBnX3EcPd3ePE5n8fzh7n46mceYcGhjnWdFIaXQoDMNXJXcQJKUpcFCZ4iQa6UWCyxl5rAwQnNueFYauZBK6cxxOY4uh74rrGxDfoO0tzV6O5vMbV8DYaTSkL727MXANlS_7Lpr7bre0bZbz4ruIZD0S_xLyQ4xQgnVUXygcqpDIFf-DOdge1fs4IrtXLG9KzbtNGLQhI7dLh39dv5b9Am4947o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350892424</pqid></control><display><type>article</type><title>Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions</title><source>Nature</source><creator>Laurent, Oscar ; Björnsen, Jana ; Wotzlaw, Jörn-Frederik ; Bretscher, Simone ; Pimenta Silva, Manuel ; Moyen, Jean-François ; Ulmer, Peter ; Bachmann, Olivier</creator><creatorcontrib>Laurent, Oscar ; Björnsen, Jana ; Wotzlaw, Jörn-Frederik ; Bretscher, Simone ; Pimenta Silva, Manuel ; Moyen, Jean-François ; Ulmer, Peter ; Bachmann, Olivier</creatorcontrib><description>Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of mafic crust at convergent plate margins. These interpretations implicitly assume that the bulk-rock compositions of TTGs did not change from magma generation in the source to complete crystallization. However, crystal–liquid segregation influences the geochemistry of felsic magmas, as shown by the textural and chemical complementarity between coeval plutons and silicic volcanic rocks in the Phanerozoic Eon. We demonstrate here that Paleoarchean (ca. 3,456 million years old) TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium–lead geochronology. The chemical signature of the dominant trondhjemites, conventionally interpreted as melts generated by high-pressure melting of basalts, reflects the combined accumulation of plagioclase phenocrysts and loss of interstitial liquid that erupted as silicic volcanic rocks. Our results indicate that the entire compositional diversity of TTGs could derive from the upper crustal differentiation of a single, tonalitic magma formed by basalt melting and/or crystallization at &lt;40 km depth. These results call for a unifying model of Hadean–Archean continent nucleation by intracrustal production of TTG magmas. The chemical diversity of Earth’s early continental building blocks can be explained by differentiation of a single melt, without complex geodynamic settings, according to petrological and geochemical analysis of samples from South Africa.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-019-0520-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 704/2151/209 ; 704/2151/213/4114 ; 704/2151/431 ; 704/2151/598 ; Basalt ; Complementarity ; Continental crust ; Crystallization ; Crystals ; Differentiation ; Earth ; Earth and Environmental Science ; Earth crust ; Earth Sciences ; Earth System Sciences ; Eruptions ; Fossils ; Geochemistry ; Geochronology ; Geochronometry ; Geology ; Geophysics/Geodesy ; Igneous rocks ; Isotopes ; Lava ; Liquids ; Low pressure ; Magma ; Magma chambers ; Melting ; Nucleation ; Organic chemistry ; Petrography ; Phanerozoic ; Plagioclase ; Plate margins ; Plateaus ; Plutons ; Pressure ; Reservoirs ; Rocks ; Sciences of the Universe ; Segregation ; Uranium ; Volcanic eruptions ; Volcanic rocks ; Volcanology</subject><ispartof>Nature geoscience, 2020-02, Vol.13 (2), p.163-169</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13</citedby><cites>FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13</cites><orcidid>0000-0002-1747-8057 ; 0000-0003-3856-9780 ; 0000-0003-3363-7764 ; 0000-0002-0065-2442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02934806$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurent, Oscar</creatorcontrib><creatorcontrib>Björnsen, Jana</creatorcontrib><creatorcontrib>Wotzlaw, Jörn-Frederik</creatorcontrib><creatorcontrib>Bretscher, Simone</creatorcontrib><creatorcontrib>Pimenta Silva, Manuel</creatorcontrib><creatorcontrib>Moyen, Jean-François</creatorcontrib><creatorcontrib>Ulmer, Peter</creatorcontrib><creatorcontrib>Bachmann, Olivier</creatorcontrib><title>Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of mafic crust at convergent plate margins. These interpretations implicitly assume that the bulk-rock compositions of TTGs did not change from magma generation in the source to complete crystallization. However, crystal–liquid segregation influences the geochemistry of felsic magmas, as shown by the textural and chemical complementarity between coeval plutons and silicic volcanic rocks in the Phanerozoic Eon. We demonstrate here that Paleoarchean (ca. 3,456 million years old) TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium–lead geochronology. The chemical signature of the dominant trondhjemites, conventionally interpreted as melts generated by high-pressure melting of basalts, reflects the combined accumulation of plagioclase phenocrysts and loss of interstitial liquid that erupted as silicic volcanic rocks. Our results indicate that the entire compositional diversity of TTGs could derive from the upper crustal differentiation of a single, tonalitic magma formed by basalt melting and/or crystallization at &lt;40 km depth. These results call for a unifying model of Hadean–Archean continent nucleation by intracrustal production of TTG magmas. The chemical diversity of Earth’s early continental building blocks can be explained by differentiation of a single melt, without complex geodynamic settings, according to petrological and geochemical analysis of samples from South Africa.</description><subject>140/146</subject><subject>704/2151/209</subject><subject>704/2151/213/4114</subject><subject>704/2151/431</subject><subject>704/2151/598</subject><subject>Basalt</subject><subject>Complementarity</subject><subject>Continental crust</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Differentiation</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth crust</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Eruptions</subject><subject>Fossils</subject><subject>Geochemistry</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Igneous rocks</subject><subject>Isotopes</subject><subject>Lava</subject><subject>Liquids</subject><subject>Low pressure</subject><subject>Magma</subject><subject>Magma chambers</subject><subject>Melting</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Petrography</subject><subject>Phanerozoic</subject><subject>Plagioclase</subject><subject>Plate margins</subject><subject>Plateaus</subject><subject>Plutons</subject><subject>Pressure</subject><subject>Reservoirs</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Segregation</subject><subject>Uranium</subject><subject>Volcanic eruptions</subject><subject>Volcanic rocks</subject><subject>Volcanology</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kTtOw0AQhi0EEiFwALqVqCgMsw_bu2UUAUGKRAMVxWpir5ONnNjMOkjpuAbX4yTYMo8KqhmNvn9efxSdc7jiIPV1UDxJeQzcxJAIiNODaMSzRMRgQB9-59qo4-gkhDVACipLRtHzDVK7-nh7D8whVd6Fli0Jt76tfREYkmM57UOLVUw-X7ENLjfIyAVHr7WnwFpsGlewxZ4FX_nc58zRrml9vQ2n0VGJVXBnX3EcPd3ePE5n8fzh7n46mceYcGhjnWdFIaXQoDMNXJXcQJKUpcFCZ4iQa6UWCyxl5rAwQnNueFYauZBK6cxxOY4uh74rrGxDfoO0tzV6O5vMbV8DYaTSkL727MXANlS_7Lpr7bre0bZbz4ruIZD0S_xLyQ4xQgnVUXygcqpDIFf-DOdge1fs4IrtXLG9KzbtNGLQhI7dLh39dv5b9Am4947o</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Laurent, Oscar</creator><creator>Björnsen, Jana</creator><creator>Wotzlaw, Jörn-Frederik</creator><creator>Bretscher, Simone</creator><creator>Pimenta Silva, Manuel</creator><creator>Moyen, Jean-François</creator><creator>Ulmer, Peter</creator><creator>Bachmann, Olivier</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1747-8057</orcidid><orcidid>https://orcid.org/0000-0003-3856-9780</orcidid><orcidid>https://orcid.org/0000-0003-3363-7764</orcidid><orcidid>https://orcid.org/0000-0002-0065-2442</orcidid></search><sort><creationdate>20200201</creationdate><title>Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions</title><author>Laurent, Oscar ; Björnsen, Jana ; Wotzlaw, Jörn-Frederik ; Bretscher, Simone ; Pimenta Silva, Manuel ; Moyen, Jean-François ; Ulmer, Peter ; Bachmann, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/146</topic><topic>704/2151/209</topic><topic>704/2151/213/4114</topic><topic>704/2151/431</topic><topic>704/2151/598</topic><topic>Basalt</topic><topic>Complementarity</topic><topic>Continental crust</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Differentiation</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth crust</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Eruptions</topic><topic>Fossils</topic><topic>Geochemistry</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Igneous rocks</topic><topic>Isotopes</topic><topic>Lava</topic><topic>Liquids</topic><topic>Low pressure</topic><topic>Magma</topic><topic>Magma chambers</topic><topic>Melting</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Petrography</topic><topic>Phanerozoic</topic><topic>Plagioclase</topic><topic>Plate margins</topic><topic>Plateaus</topic><topic>Plutons</topic><topic>Pressure</topic><topic>Reservoirs</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Segregation</topic><topic>Uranium</topic><topic>Volcanic eruptions</topic><topic>Volcanic rocks</topic><topic>Volcanology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurent, Oscar</creatorcontrib><creatorcontrib>Björnsen, Jana</creatorcontrib><creatorcontrib>Wotzlaw, Jörn-Frederik</creatorcontrib><creatorcontrib>Bretscher, Simone</creatorcontrib><creatorcontrib>Pimenta Silva, Manuel</creatorcontrib><creatorcontrib>Moyen, Jean-François</creatorcontrib><creatorcontrib>Ulmer, Peter</creatorcontrib><creatorcontrib>Bachmann, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurent, Oscar</au><au>Björnsen, Jana</au><au>Wotzlaw, Jörn-Frederik</au><au>Bretscher, Simone</au><au>Pimenta Silva, Manuel</au><au>Moyen, Jean-François</au><au>Ulmer, Peter</au><au>Bachmann, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>163</spage><epage>169</epage><pages>163-169</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of mafic crust at convergent plate margins. These interpretations implicitly assume that the bulk-rock compositions of TTGs did not change from magma generation in the source to complete crystallization. However, crystal–liquid segregation influences the geochemistry of felsic magmas, as shown by the textural and chemical complementarity between coeval plutons and silicic volcanic rocks in the Phanerozoic Eon. We demonstrate here that Paleoarchean (ca. 3,456 million years old) TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium–lead geochronology. The chemical signature of the dominant trondhjemites, conventionally interpreted as melts generated by high-pressure melting of basalts, reflects the combined accumulation of plagioclase phenocrysts and loss of interstitial liquid that erupted as silicic volcanic rocks. Our results indicate that the entire compositional diversity of TTGs could derive from the upper crustal differentiation of a single, tonalitic magma formed by basalt melting and/or crystallization at &lt;40 km depth. These results call for a unifying model of Hadean–Archean continent nucleation by intracrustal production of TTG magmas. The chemical diversity of Earth’s early continental building blocks can be explained by differentiation of a single melt, without complex geodynamic settings, according to petrological and geochemical analysis of samples from South Africa.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-019-0520-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1747-8057</orcidid><orcidid>https://orcid.org/0000-0003-3856-9780</orcidid><orcidid>https://orcid.org/0000-0003-3363-7764</orcidid><orcidid>https://orcid.org/0000-0002-0065-2442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2020-02, Vol.13 (2), p.163-169
issn 1752-0894
1752-0908
language eng
recordid cdi_hal_primary_oai_HAL_hal_02934806v1
source Nature
subjects 140/146
704/2151/209
704/2151/213/4114
704/2151/431
704/2151/598
Basalt
Complementarity
Continental crust
Crystallization
Crystals
Differentiation
Earth
Earth and Environmental Science
Earth crust
Earth Sciences
Earth System Sciences
Eruptions
Fossils
Geochemistry
Geochronology
Geochronometry
Geology
Geophysics/Geodesy
Igneous rocks
Isotopes
Lava
Liquids
Low pressure
Magma
Magma chambers
Melting
Nucleation
Organic chemistry
Petrography
Phanerozoic
Plagioclase
Plate margins
Plateaus
Plutons
Pressure
Reservoirs
Rocks
Sciences of the Universe
Segregation
Uranium
Volcanic eruptions
Volcanic rocks
Volcanology
title Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Earth%E2%80%99s%20earliest%20granitoids%20are%20crystal-rich%20magma%20reservoirs%20tapped%20by%20silicic%20eruptions&rft.jtitle=Nature%20geoscience&rft.au=Laurent,%20Oscar&rft.date=2020-02-01&rft.volume=13&rft.issue=2&rft.spage=163&rft.epage=169&rft.pages=163-169&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-019-0520-6&rft_dat=%3Cproquest_hal_p%3E2475050878%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350892424&rft_id=info:pmid/&rfr_iscdi=true