Loading…
Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions
Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of m...
Saved in:
Published in: | Nature geoscience 2020-02, Vol.13 (2), p.163-169 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13 |
---|---|
cites | cdi_FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13 |
container_end_page | 169 |
container_issue | 2 |
container_start_page | 163 |
container_title | Nature geoscience |
container_volume | 13 |
creator | Laurent, Oscar Björnsen, Jana Wotzlaw, Jörn-Frederik Bretscher, Simone Pimenta Silva, Manuel Moyen, Jean-François Ulmer, Peter Bachmann, Olivier |
description | Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of mafic crust at convergent plate margins. These interpretations implicitly assume that the bulk-rock compositions of TTGs did not change from magma generation in the source to complete crystallization. However, crystal–liquid segregation influences the geochemistry of felsic magmas, as shown by the textural and chemical complementarity between coeval plutons and silicic volcanic rocks in the Phanerozoic Eon. We demonstrate here that Paleoarchean (ca. 3,456 million years old) TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium–lead geochronology. The chemical signature of the dominant trondhjemites, conventionally interpreted as melts generated by high-pressure melting of basalts, reflects the combined accumulation of plagioclase phenocrysts and loss of interstitial liquid that erupted as silicic volcanic rocks. Our results indicate that the entire compositional diversity of TTGs could derive from the upper crustal differentiation of a single, tonalitic magma formed by basalt melting and/or crystallization at |
doi_str_mv | 10.1038/s41561-019-0520-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02934806v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475050878</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13</originalsourceid><addsrcrecordid>eNp9kTtOw0AQhi0EEiFwALqVqCgMsw_bu2UUAUGKRAMVxWpir5ONnNjMOkjpuAbX4yTYMo8KqhmNvn9efxSdc7jiIPV1UDxJeQzcxJAIiNODaMSzRMRgQB9-59qo4-gkhDVACipLRtHzDVK7-nh7D8whVd6Fli0Jt76tfREYkmM57UOLVUw-X7ENLjfIyAVHr7WnwFpsGlewxZ4FX_nc58zRrml9vQ2n0VGJVXBnX3EcPd3ePE5n8fzh7n46mceYcGhjnWdFIaXQoDMNXJXcQJKUpcFCZ4iQa6UWCyxl5rAwQnNueFYauZBK6cxxOY4uh74rrGxDfoO0tzV6O5vMbV8DYaTSkL727MXANlS_7Lpr7bre0bZbz4ruIZD0S_xLyQ4xQgnVUXygcqpDIFf-DOdge1fs4IrtXLG9KzbtNGLQhI7dLh39dv5b9Am4947o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350892424</pqid></control><display><type>article</type><title>Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions</title><source>Nature</source><creator>Laurent, Oscar ; Björnsen, Jana ; Wotzlaw, Jörn-Frederik ; Bretscher, Simone ; Pimenta Silva, Manuel ; Moyen, Jean-François ; Ulmer, Peter ; Bachmann, Olivier</creator><creatorcontrib>Laurent, Oscar ; Björnsen, Jana ; Wotzlaw, Jörn-Frederik ; Bretscher, Simone ; Pimenta Silva, Manuel ; Moyen, Jean-François ; Ulmer, Peter ; Bachmann, Olivier</creatorcontrib><description>Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of mafic crust at convergent plate margins. These interpretations implicitly assume that the bulk-rock compositions of TTGs did not change from magma generation in the source to complete crystallization. However, crystal–liquid segregation influences the geochemistry of felsic magmas, as shown by the textural and chemical complementarity between coeval plutons and silicic volcanic rocks in the Phanerozoic Eon. We demonstrate here that Paleoarchean (ca. 3,456 million years old) TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium–lead geochronology. The chemical signature of the dominant trondhjemites, conventionally interpreted as melts generated by high-pressure melting of basalts, reflects the combined accumulation of plagioclase phenocrysts and loss of interstitial liquid that erupted as silicic volcanic rocks. Our results indicate that the entire compositional diversity of TTGs could derive from the upper crustal differentiation of a single, tonalitic magma formed by basalt melting and/or crystallization at <40 km depth. These results call for a unifying model of Hadean–Archean continent nucleation by intracrustal production of TTG magmas.
The chemical diversity of Earth’s early continental building blocks can be explained by differentiation of a single melt, without complex geodynamic settings, according to petrological and geochemical analysis of samples from South Africa.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-019-0520-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 704/2151/209 ; 704/2151/213/4114 ; 704/2151/431 ; 704/2151/598 ; Basalt ; Complementarity ; Continental crust ; Crystallization ; Crystals ; Differentiation ; Earth ; Earth and Environmental Science ; Earth crust ; Earth Sciences ; Earth System Sciences ; Eruptions ; Fossils ; Geochemistry ; Geochronology ; Geochronometry ; Geology ; Geophysics/Geodesy ; Igneous rocks ; Isotopes ; Lava ; Liquids ; Low pressure ; Magma ; Magma chambers ; Melting ; Nucleation ; Organic chemistry ; Petrography ; Phanerozoic ; Plagioclase ; Plate margins ; Plateaus ; Plutons ; Pressure ; Reservoirs ; Rocks ; Sciences of the Universe ; Segregation ; Uranium ; Volcanic eruptions ; Volcanic rocks ; Volcanology</subject><ispartof>Nature geoscience, 2020-02, Vol.13 (2), p.163-169</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13</citedby><cites>FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13</cites><orcidid>0000-0002-1747-8057 ; 0000-0003-3856-9780 ; 0000-0003-3363-7764 ; 0000-0002-0065-2442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02934806$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurent, Oscar</creatorcontrib><creatorcontrib>Björnsen, Jana</creatorcontrib><creatorcontrib>Wotzlaw, Jörn-Frederik</creatorcontrib><creatorcontrib>Bretscher, Simone</creatorcontrib><creatorcontrib>Pimenta Silva, Manuel</creatorcontrib><creatorcontrib>Moyen, Jean-François</creatorcontrib><creatorcontrib>Ulmer, Peter</creatorcontrib><creatorcontrib>Bachmann, Olivier</creatorcontrib><title>Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of mafic crust at convergent plate margins. These interpretations implicitly assume that the bulk-rock compositions of TTGs did not change from magma generation in the source to complete crystallization. However, crystal–liquid segregation influences the geochemistry of felsic magmas, as shown by the textural and chemical complementarity between coeval plutons and silicic volcanic rocks in the Phanerozoic Eon. We demonstrate here that Paleoarchean (ca. 3,456 million years old) TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium–lead geochronology. The chemical signature of the dominant trondhjemites, conventionally interpreted as melts generated by high-pressure melting of basalts, reflects the combined accumulation of plagioclase phenocrysts and loss of interstitial liquid that erupted as silicic volcanic rocks. Our results indicate that the entire compositional diversity of TTGs could derive from the upper crustal differentiation of a single, tonalitic magma formed by basalt melting and/or crystallization at <40 km depth. These results call for a unifying model of Hadean–Archean continent nucleation by intracrustal production of TTG magmas.
The chemical diversity of Earth’s early continental building blocks can be explained by differentiation of a single melt, without complex geodynamic settings, according to petrological and geochemical analysis of samples from South Africa.</description><subject>140/146</subject><subject>704/2151/209</subject><subject>704/2151/213/4114</subject><subject>704/2151/431</subject><subject>704/2151/598</subject><subject>Basalt</subject><subject>Complementarity</subject><subject>Continental crust</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Differentiation</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth crust</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Eruptions</subject><subject>Fossils</subject><subject>Geochemistry</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Igneous rocks</subject><subject>Isotopes</subject><subject>Lava</subject><subject>Liquids</subject><subject>Low pressure</subject><subject>Magma</subject><subject>Magma chambers</subject><subject>Melting</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Petrography</subject><subject>Phanerozoic</subject><subject>Plagioclase</subject><subject>Plate margins</subject><subject>Plateaus</subject><subject>Plutons</subject><subject>Pressure</subject><subject>Reservoirs</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Segregation</subject><subject>Uranium</subject><subject>Volcanic eruptions</subject><subject>Volcanic rocks</subject><subject>Volcanology</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kTtOw0AQhi0EEiFwALqVqCgMsw_bu2UUAUGKRAMVxWpir5ONnNjMOkjpuAbX4yTYMo8KqhmNvn9efxSdc7jiIPV1UDxJeQzcxJAIiNODaMSzRMRgQB9-59qo4-gkhDVACipLRtHzDVK7-nh7D8whVd6Fli0Jt76tfREYkmM57UOLVUw-X7ENLjfIyAVHr7WnwFpsGlewxZ4FX_nc58zRrml9vQ2n0VGJVXBnX3EcPd3ePE5n8fzh7n46mceYcGhjnWdFIaXQoDMNXJXcQJKUpcFCZ4iQa6UWCyxl5rAwQnNueFYauZBK6cxxOY4uh74rrGxDfoO0tzV6O5vMbV8DYaTSkL727MXANlS_7Lpr7bre0bZbz4ruIZD0S_xLyQ4xQgnVUXygcqpDIFf-DOdge1fs4IrtXLG9KzbtNGLQhI7dLh39dv5b9Am4947o</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Laurent, Oscar</creator><creator>Björnsen, Jana</creator><creator>Wotzlaw, Jörn-Frederik</creator><creator>Bretscher, Simone</creator><creator>Pimenta Silva, Manuel</creator><creator>Moyen, Jean-François</creator><creator>Ulmer, Peter</creator><creator>Bachmann, Olivier</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1747-8057</orcidid><orcidid>https://orcid.org/0000-0003-3856-9780</orcidid><orcidid>https://orcid.org/0000-0003-3363-7764</orcidid><orcidid>https://orcid.org/0000-0002-0065-2442</orcidid></search><sort><creationdate>20200201</creationdate><title>Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions</title><author>Laurent, Oscar ; Björnsen, Jana ; Wotzlaw, Jörn-Frederik ; Bretscher, Simone ; Pimenta Silva, Manuel ; Moyen, Jean-François ; Ulmer, Peter ; Bachmann, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/146</topic><topic>704/2151/209</topic><topic>704/2151/213/4114</topic><topic>704/2151/431</topic><topic>704/2151/598</topic><topic>Basalt</topic><topic>Complementarity</topic><topic>Continental crust</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Differentiation</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth crust</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Eruptions</topic><topic>Fossils</topic><topic>Geochemistry</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Igneous rocks</topic><topic>Isotopes</topic><topic>Lava</topic><topic>Liquids</topic><topic>Low pressure</topic><topic>Magma</topic><topic>Magma chambers</topic><topic>Melting</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Petrography</topic><topic>Phanerozoic</topic><topic>Plagioclase</topic><topic>Plate margins</topic><topic>Plateaus</topic><topic>Plutons</topic><topic>Pressure</topic><topic>Reservoirs</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Segregation</topic><topic>Uranium</topic><topic>Volcanic eruptions</topic><topic>Volcanic rocks</topic><topic>Volcanology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurent, Oscar</creatorcontrib><creatorcontrib>Björnsen, Jana</creatorcontrib><creatorcontrib>Wotzlaw, Jörn-Frederik</creatorcontrib><creatorcontrib>Bretscher, Simone</creatorcontrib><creatorcontrib>Pimenta Silva, Manuel</creatorcontrib><creatorcontrib>Moyen, Jean-François</creatorcontrib><creatorcontrib>Ulmer, Peter</creatorcontrib><creatorcontrib>Bachmann, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurent, Oscar</au><au>Björnsen, Jana</au><au>Wotzlaw, Jörn-Frederik</au><au>Bretscher, Simone</au><au>Pimenta Silva, Manuel</au><au>Moyen, Jean-François</au><au>Ulmer, Peter</au><au>Bachmann, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>163</spage><epage>169</epage><pages>163-169</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Granitoids of the tonalite–trondhjemite–granodiorite (TTG) series dominate Earth’s earliest continental crust. The geochemical diversity of TTGs is ascribed to several possible geodynamic settings of magma formation, from low-pressure differentiation of oceanic plateaus to high-pressure melting of mafic crust at convergent plate margins. These interpretations implicitly assume that the bulk-rock compositions of TTGs did not change from magma generation in the source to complete crystallization. However, crystal–liquid segregation influences the geochemistry of felsic magmas, as shown by the textural and chemical complementarity between coeval plutons and silicic volcanic rocks in the Phanerozoic Eon. We demonstrate here that Paleoarchean (ca. 3,456 million years old) TTG plutons from South Africa do not represent liquids but fossil, crystal-rich magma reservoirs left behind by the eruption of silicic volcanic rocks, being possibly coeval at the million-year scale as constrained by high-precision uranium–lead geochronology. The chemical signature of the dominant trondhjemites, conventionally interpreted as melts generated by high-pressure melting of basalts, reflects the combined accumulation of plagioclase phenocrysts and loss of interstitial liquid that erupted as silicic volcanic rocks. Our results indicate that the entire compositional diversity of TTGs could derive from the upper crustal differentiation of a single, tonalitic magma formed by basalt melting and/or crystallization at <40 km depth. These results call for a unifying model of Hadean–Archean continent nucleation by intracrustal production of TTG magmas.
The chemical diversity of Earth’s early continental building blocks can be explained by differentiation of a single melt, without complex geodynamic settings, according to petrological and geochemical analysis of samples from South Africa.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-019-0520-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1747-8057</orcidid><orcidid>https://orcid.org/0000-0003-3856-9780</orcidid><orcidid>https://orcid.org/0000-0003-3363-7764</orcidid><orcidid>https://orcid.org/0000-0002-0065-2442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2020-02, Vol.13 (2), p.163-169 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02934806v1 |
source | Nature |
subjects | 140/146 704/2151/209 704/2151/213/4114 704/2151/431 704/2151/598 Basalt Complementarity Continental crust Crystallization Crystals Differentiation Earth Earth and Environmental Science Earth crust Earth Sciences Earth System Sciences Eruptions Fossils Geochemistry Geochronology Geochronometry Geology Geophysics/Geodesy Igneous rocks Isotopes Lava Liquids Low pressure Magma Magma chambers Melting Nucleation Organic chemistry Petrography Phanerozoic Plagioclase Plate margins Plateaus Plutons Pressure Reservoirs Rocks Sciences of the Universe Segregation Uranium Volcanic eruptions Volcanic rocks Volcanology |
title | Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Earth%E2%80%99s%20earliest%20granitoids%20are%20crystal-rich%20magma%20reservoirs%20tapped%20by%20silicic%20eruptions&rft.jtitle=Nature%20geoscience&rft.au=Laurent,%20Oscar&rft.date=2020-02-01&rft.volume=13&rft.issue=2&rft.spage=163&rft.epage=169&rft.pages=163-169&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-019-0520-6&rft_dat=%3Cproquest_hal_p%3E2475050878%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510t-8c7dd33280878014f19055ff9ad87aa0c844bbaf37ead92811917f93b34487e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350892424&rft_id=info:pmid/&rfr_iscdi=true |