Loading…

Spatial distributions of plasma parameters in conventional magnetron discharges in presence of nanoparticles

Two-dimensional spatial measurements of magnetic field and plasma parameters have been performed in conventional magnetron DC discharges during the formation of metallic nanoparticles. Correlations between the electron density and temperature distributions, and the magnetic field geometry and streng...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plasma physics 2020-10, Vol.86 (5), Article 905860512
Main Authors: Chami, A., Arnas, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-471ef765f3cee3cccd29c9b76e115dc0a89bbddb89e880274ccb604ac407b6f63
cites cdi_FETCH-LOGICAL-c394t-471ef765f3cee3cccd29c9b76e115dc0a89bbddb89e880274ccb604ac407b6f63
container_end_page
container_issue 5
container_start_page
container_title Journal of plasma physics
container_volume 86
creator Chami, A.
Arnas, C.
description Two-dimensional spatial measurements of magnetic field and plasma parameters have been performed in conventional magnetron DC discharges during the formation of metallic nanoparticles. Correlations between the electron density and temperature distributions, and the magnetic field geometry and strength have been established. A sharp increase of the plasma potential is found on the edge of the last magnetic arch followed by a decrease towards the anode plate and edges. It is shown that the spatial variation of the plasma potential is at the origin of a potential well that can trap negatively charged nanoparticles.
doi_str_mv 10.1017/S0022377820001014
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02954792v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377820001014</cupid><sourcerecordid>2492880136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-471ef765f3cee3cccd29c9b76e115dc0a89bbddb89e880274ccb604ac407b6f63</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWKs_wNuCJw-r-epmcyxFrVDwUD0vSXa2TdlN1mRb8N-btaIH8TQw87zPMAxC1wTfEUzE_RpjSpkQJcUYpw4_QRPCC5mLEotTNBnH-Tg_Rxcx7hLEMBUT1K57NVjVZrWNQ7B6P1jvYuabrG9V7FTWq6A6GCDEzLrMeHcANzIp0qmNgyF4N4bNVoUNfEF9gAjOwGhxyvmkGKxpIV6is0a1Ea6-6xS9PT68Lpb56uXpeTFf5YZJPuRcEGhEMWuYAWDGmJpKI7UogJBZbbAqpdZ1rUsJZZmu4MboAnNlOBa6aAo2RbdH71a1VR9sp8JH5ZWtlvNVNfYwlTMuJD2QxN4c2T749z3Eodr5fUjnxYpySdMCwkYjOVIm-BgDND9agqvxAdWfB6QM-86oTgdbb-BX_X_qE58qiXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492880136</pqid></control><display><type>article</type><title>Spatial distributions of plasma parameters in conventional magnetron discharges in presence of nanoparticles</title><source>Cambridge Journals Online</source><creator>Chami, A. ; Arnas, C.</creator><creatorcontrib>Chami, A. ; Arnas, C.</creatorcontrib><description>Two-dimensional spatial measurements of magnetic field and plasma parameters have been performed in conventional magnetron DC discharges during the formation of metallic nanoparticles. Correlations between the electron density and temperature distributions, and the magnetic field geometry and strength have been established. A sharp increase of the plasma potential is found on the edge of the last magnetic arch followed by a decrease towards the anode plate and edges. It is shown that the spatial variation of the plasma potential is at the origin of a potential well that can trap negatively charged nanoparticles.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377820001014</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Discharge ; Electron density ; Magnetic fields ; Magnetism ; Nanoparticles ; Parameters ; Physics ; Plasma ; Plasma Physics ; Racetracks ; Spatial distribution ; Stainless steel ; Temperature distribution</subject><ispartof>Journal of plasma physics, 2020-10, Vol.86 (5), Article 905860512</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-471ef765f3cee3cccd29c9b76e115dc0a89bbddb89e880274ccb604ac407b6f63</citedby><cites>FETCH-LOGICAL-c394t-471ef765f3cee3cccd29c9b76e115dc0a89bbddb89e880274ccb604ac407b6f63</cites><orcidid>0000-0002-1114-3969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377820001014/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,72703</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02954792$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chami, A.</creatorcontrib><creatorcontrib>Arnas, C.</creatorcontrib><title>Spatial distributions of plasma parameters in conventional magnetron discharges in presence of nanoparticles</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Two-dimensional spatial measurements of magnetic field and plasma parameters have been performed in conventional magnetron DC discharges during the formation of metallic nanoparticles. Correlations between the electron density and temperature distributions, and the magnetic field geometry and strength have been established. A sharp increase of the plasma potential is found on the edge of the last magnetic arch followed by a decrease towards the anode plate and edges. It is shown that the spatial variation of the plasma potential is at the origin of a potential well that can trap negatively charged nanoparticles.</description><subject>Discharge</subject><subject>Electron density</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Nanoparticles</subject><subject>Parameters</subject><subject>Physics</subject><subject>Plasma</subject><subject>Plasma Physics</subject><subject>Racetracks</subject><subject>Spatial distribution</subject><subject>Stainless steel</subject><subject>Temperature distribution</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhoMoWKs_wNuCJw-r-epmcyxFrVDwUD0vSXa2TdlN1mRb8N-btaIH8TQw87zPMAxC1wTfEUzE_RpjSpkQJcUYpw4_QRPCC5mLEotTNBnH-Tg_Rxcx7hLEMBUT1K57NVjVZrWNQ7B6P1jvYuabrG9V7FTWq6A6GCDEzLrMeHcANzIp0qmNgyF4N4bNVoUNfEF9gAjOwGhxyvmkGKxpIV6is0a1Ea6-6xS9PT68Lpb56uXpeTFf5YZJPuRcEGhEMWuYAWDGmJpKI7UogJBZbbAqpdZ1rUsJZZmu4MboAnNlOBa6aAo2RbdH71a1VR9sp8JH5ZWtlvNVNfYwlTMuJD2QxN4c2T749z3Eodr5fUjnxYpySdMCwkYjOVIm-BgDND9agqvxAdWfB6QM-86oTgdbb-BX_X_qE58qiXQ</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>Chami, A.</creator><creator>Arnas, C.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1114-3969</orcidid></search><sort><creationdate>20201016</creationdate><title>Spatial distributions of plasma parameters in conventional magnetron discharges in presence of nanoparticles</title><author>Chami, A. ; Arnas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-471ef765f3cee3cccd29c9b76e115dc0a89bbddb89e880274ccb604ac407b6f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Discharge</topic><topic>Electron density</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Nanoparticles</topic><topic>Parameters</topic><topic>Physics</topic><topic>Plasma</topic><topic>Plasma Physics</topic><topic>Racetracks</topic><topic>Spatial distribution</topic><topic>Stainless steel</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chami, A.</creatorcontrib><creatorcontrib>Arnas, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Journals (ProQuest Database)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chami, A.</au><au>Arnas, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial distributions of plasma parameters in conventional magnetron discharges in presence of nanoparticles</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2020-10-16</date><risdate>2020</risdate><volume>86</volume><issue>5</issue><artnum>905860512</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>Two-dimensional spatial measurements of magnetic field and plasma parameters have been performed in conventional magnetron DC discharges during the formation of metallic nanoparticles. Correlations between the electron density and temperature distributions, and the magnetic field geometry and strength have been established. A sharp increase of the plasma potential is found on the edge of the last magnetic arch followed by a decrease towards the anode plate and edges. It is shown that the spatial variation of the plasma potential is at the origin of a potential well that can trap negatively charged nanoparticles.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377820001014</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1114-3969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2020-10, Vol.86 (5), Article 905860512
issn 0022-3778
1469-7807
language eng
recordid cdi_hal_primary_oai_HAL_hal_02954792v1
source Cambridge Journals Online
subjects Discharge
Electron density
Magnetic fields
Magnetism
Nanoparticles
Parameters
Physics
Plasma
Plasma Physics
Racetracks
Spatial distribution
Stainless steel
Temperature distribution
title Spatial distributions of plasma parameters in conventional magnetron discharges in presence of nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20distributions%20of%20plasma%20parameters%20in%20conventional%20magnetron%20discharges%20in%20presence%20of%20nanoparticles&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Chami,%20A.&rft.date=2020-10-16&rft.volume=86&rft.issue=5&rft.artnum=905860512&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377820001014&rft_dat=%3Cproquest_hal_p%3E2492880136%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-471ef765f3cee3cccd29c9b76e115dc0a89bbddb89e880274ccb604ac407b6f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492880136&rft_id=info:pmid/&rft_cupid=10_1017_S0022377820001014&rfr_iscdi=true