Loading…

New insights on the population genetic structure of the great scallop (Pecten maximus) in the English Channel, coupling microsatellite data and demogenetic simulations

The great scallop (Pecten maximus) is a commercially important bivalve in Europe, particularly in the English Channel, where fisheries are managed at regional and local scales through the regulation of fishing effort. In the long term, knowledge about larval dispersal and gene flow between populatio...

Full description

Saved in:
Bibliographic Details
Published in:Aquatic conservation 2020-10, Vol.30 (10), p.1841-1853
Main Authors: Handal, William, Szostek, Claire, Hold, Natalie, Andrello, Marco, Thiébaut, Eric, Harney, Ewan, Lefebvre, Gwendoline, Borcier, Elodie, Jolivet, Aurélie, Nicolle, Amandine, Boyé, Aurélien, Foucher, Eric, Boudry, Pierre, Charrier, Grégory
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3616-7082798fc8a44d90ebf0b0eb58f6d2ad2ee1c30db436dab7881f8a7493639b2e3
cites cdi_FETCH-LOGICAL-c3616-7082798fc8a44d90ebf0b0eb58f6d2ad2ee1c30db436dab7881f8a7493639b2e3
container_end_page 1853
container_issue 10
container_start_page 1841
container_title Aquatic conservation
container_volume 30
creator Handal, William
Szostek, Claire
Hold, Natalie
Andrello, Marco
Thiébaut, Eric
Harney, Ewan
Lefebvre, Gwendoline
Borcier, Elodie
Jolivet, Aurélie
Nicolle, Amandine
Boyé, Aurélien
Foucher, Eric
Boudry, Pierre
Charrier, Grégory
description The great scallop (Pecten maximus) is a commercially important bivalve in Europe, particularly in the English Channel, where fisheries are managed at regional and local scales through the regulation of fishing effort. In the long term, knowledge about larval dispersal and gene flow between populations is essential to ensure proper stock management. Yet, previous population genetic studies have reported contradictory results. In this study, scallop samples collected across the main fishing grounds along the French and English coasts of the English Channel (20 samples with temporal replicates for three sites, n = 1059 individuals), and the population genetic structure was analysed using 13 microsatellite loci. Coupling empirical genetic data with demogenetic modelling based on a biophysical model simulating larval exchanges among scallop beds revealed a subtle genetic differentiation between south‐west English populations and the rest of the English Channel, which was consistent with larval dispersal simulations. The present study provides a step forward in the understanding of great scallop population biology in the English Channel, underlining the fact that even in a context of potentially high gene flow and recent divergence times since the end of the last glacial maximum, weak but significant spatial genetic structure can be identified at a regional scale.
doi_str_mv 10.1002/aqc.3316
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02956416v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448677577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3616-7082798fc8a44d90ebf0b0eb58f6d2ad2ee1c30db436dab7881f8a7493639b2e3</originalsourceid><addsrcrecordid>eNp10d9r1TAUB_AiDpyb4J8Q8GUDuyVNm7SPl8vchItT0OeQpqdtRpp0SercX7R_0_RW9uZLfvHhm3M4WfaR4CuCcXEtH9UVpYS9yU4Jbpoc86p6u56rIueM0HfZ-xAeMMYNI-w0e_kGT0jboIcxBuQsiiOg2c2LkVGn6wAWolYoRL-ouHhArj-awYOMKChpjJvRxXdQESya5B89LeEyRR7VjR2MDiPaj9JaMJ-RcststB3QpJV3QUYwRkdAnYwSSduhDib3-mnK2uoI59lJL02AD__2s-zXl5uf-7v8cH_7db875IqmfnKO64I3da9qWZZdg6HtcZvWqu5ZV8iuACCK4q4tKetky-ua9LXkZUMZbdoC6Fl2ueWO0ojZ60n6Z-GkFne7g1jfcNFUrCTsN0n202Zn7x4XCFE8uMXbVJ4oyrJmnFecJ3WxqbXf4KF_jSVYrCMTaWRiHVmi-UaftIHn_zqx-7E_-r-f5pol</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448677577</pqid></control><display><type>article</type><title>New insights on the population genetic structure of the great scallop (Pecten maximus) in the English Channel, coupling microsatellite data and demogenetic simulations</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Handal, William ; Szostek, Claire ; Hold, Natalie ; Andrello, Marco ; Thiébaut, Eric ; Harney, Ewan ; Lefebvre, Gwendoline ; Borcier, Elodie ; Jolivet, Aurélie ; Nicolle, Amandine ; Boyé, Aurélien ; Foucher, Eric ; Boudry, Pierre ; Charrier, Grégory</creator><creatorcontrib>Handal, William ; Szostek, Claire ; Hold, Natalie ; Andrello, Marco ; Thiébaut, Eric ; Harney, Ewan ; Lefebvre, Gwendoline ; Borcier, Elodie ; Jolivet, Aurélie ; Nicolle, Amandine ; Boyé, Aurélien ; Foucher, Eric ; Boudry, Pierre ; Charrier, Grégory</creatorcontrib><description>The great scallop (Pecten maximus) is a commercially important bivalve in Europe, particularly in the English Channel, where fisheries are managed at regional and local scales through the regulation of fishing effort. In the long term, knowledge about larval dispersal and gene flow between populations is essential to ensure proper stock management. Yet, previous population genetic studies have reported contradictory results. In this study, scallop samples collected across the main fishing grounds along the French and English coasts of the English Channel (20 samples with temporal replicates for three sites, n = 1059 individuals), and the population genetic structure was analysed using 13 microsatellite loci. Coupling empirical genetic data with demogenetic modelling based on a biophysical model simulating larval exchanges among scallop beds revealed a subtle genetic differentiation between south‐west English populations and the rest of the English Channel, which was consistent with larval dispersal simulations. The present study provides a step forward in the understanding of great scallop population biology in the English Channel, underlining the fact that even in a context of potentially high gene flow and recent divergence times since the end of the last glacial maximum, weak but significant spatial genetic structure can be identified at a regional scale.</description><identifier>ISSN: 1052-7613</identifier><identifier>EISSN: 1099-0755</identifier><identifier>DOI: 10.1002/aqc.3316</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Animal biology ; Biology ; Computer simulation ; Coupling ; Dispersal ; Dispersion ; Empirical analysis ; English Channel ; Fisheries ; Fisheries management ; Fishing ; Fishing effort ; Fishing grounds ; Fishing zones ; Gene flow ; Genetic analysis ; genetic modelling ; genetic resources management ; Genetic structure ; great scallop ; Larvae ; Life Sciences ; low genetic structure ; Marine molluscs ; Microsatellites ; Mollusks ; Ocean, Atmosphere ; Pecten maximus ; Population ; Population biology ; Population genetics ; Population studies ; Populations ; Sciences of the Universe</subject><ispartof>Aquatic conservation, 2020-10, Vol.30 (10), p.1841-1853</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3616-7082798fc8a44d90ebf0b0eb58f6d2ad2ee1c30db436dab7881f8a7493639b2e3</citedby><cites>FETCH-LOGICAL-c3616-7082798fc8a44d90ebf0b0eb58f6d2ad2ee1c30db436dab7881f8a7493639b2e3</cites><orcidid>0000-0002-5150-2276 ; 0000-0002-5832-8856 ; 0000-0002-8730-9267 ; 0000-0001-5415-3326 ; 0000-0002-3704-2947 ; 0000-0001-7590-2736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://ensta-bretagne.hal.science/hal-02956416$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Handal, William</creatorcontrib><creatorcontrib>Szostek, Claire</creatorcontrib><creatorcontrib>Hold, Natalie</creatorcontrib><creatorcontrib>Andrello, Marco</creatorcontrib><creatorcontrib>Thiébaut, Eric</creatorcontrib><creatorcontrib>Harney, Ewan</creatorcontrib><creatorcontrib>Lefebvre, Gwendoline</creatorcontrib><creatorcontrib>Borcier, Elodie</creatorcontrib><creatorcontrib>Jolivet, Aurélie</creatorcontrib><creatorcontrib>Nicolle, Amandine</creatorcontrib><creatorcontrib>Boyé, Aurélien</creatorcontrib><creatorcontrib>Foucher, Eric</creatorcontrib><creatorcontrib>Boudry, Pierre</creatorcontrib><creatorcontrib>Charrier, Grégory</creatorcontrib><title>New insights on the population genetic structure of the great scallop (Pecten maximus) in the English Channel, coupling microsatellite data and demogenetic simulations</title><title>Aquatic conservation</title><description>The great scallop (Pecten maximus) is a commercially important bivalve in Europe, particularly in the English Channel, where fisheries are managed at regional and local scales through the regulation of fishing effort. In the long term, knowledge about larval dispersal and gene flow between populations is essential to ensure proper stock management. Yet, previous population genetic studies have reported contradictory results. In this study, scallop samples collected across the main fishing grounds along the French and English coasts of the English Channel (20 samples with temporal replicates for three sites, n = 1059 individuals), and the population genetic structure was analysed using 13 microsatellite loci. Coupling empirical genetic data with demogenetic modelling based on a biophysical model simulating larval exchanges among scallop beds revealed a subtle genetic differentiation between south‐west English populations and the rest of the English Channel, which was consistent with larval dispersal simulations. The present study provides a step forward in the understanding of great scallop population biology in the English Channel, underlining the fact that even in a context of potentially high gene flow and recent divergence times since the end of the last glacial maximum, weak but significant spatial genetic structure can be identified at a regional scale.</description><subject>Animal biology</subject><subject>Biology</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Empirical analysis</subject><subject>English Channel</subject><subject>Fisheries</subject><subject>Fisheries management</subject><subject>Fishing</subject><subject>Fishing effort</subject><subject>Fishing grounds</subject><subject>Fishing zones</subject><subject>Gene flow</subject><subject>Genetic analysis</subject><subject>genetic modelling</subject><subject>genetic resources management</subject><subject>Genetic structure</subject><subject>great scallop</subject><subject>Larvae</subject><subject>Life Sciences</subject><subject>low genetic structure</subject><subject>Marine molluscs</subject><subject>Microsatellites</subject><subject>Mollusks</subject><subject>Ocean, Atmosphere</subject><subject>Pecten maximus</subject><subject>Population</subject><subject>Population biology</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Populations</subject><subject>Sciences of the Universe</subject><issn>1052-7613</issn><issn>1099-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10d9r1TAUB_AiDpyb4J8Q8GUDuyVNm7SPl8vchItT0OeQpqdtRpp0SercX7R_0_RW9uZLfvHhm3M4WfaR4CuCcXEtH9UVpYS9yU4Jbpoc86p6u56rIueM0HfZ-xAeMMYNI-w0e_kGT0jboIcxBuQsiiOg2c2LkVGn6wAWolYoRL-ouHhArj-awYOMKChpjJvRxXdQESya5B89LeEyRR7VjR2MDiPaj9JaMJ-RcststB3QpJV3QUYwRkdAnYwSSduhDib3-mnK2uoI59lJL02AD__2s-zXl5uf-7v8cH_7db875IqmfnKO64I3da9qWZZdg6HtcZvWqu5ZV8iuACCK4q4tKetky-ua9LXkZUMZbdoC6Fl2ueWO0ojZ60n6Z-GkFne7g1jfcNFUrCTsN0n202Zn7x4XCFE8uMXbVJ4oyrJmnFecJ3WxqbXf4KF_jSVYrCMTaWRiHVmi-UaftIHn_zqx-7E_-r-f5pol</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Handal, William</creator><creator>Szostek, Claire</creator><creator>Hold, Natalie</creator><creator>Andrello, Marco</creator><creator>Thiébaut, Eric</creator><creator>Harney, Ewan</creator><creator>Lefebvre, Gwendoline</creator><creator>Borcier, Elodie</creator><creator>Jolivet, Aurélie</creator><creator>Nicolle, Amandine</creator><creator>Boyé, Aurélien</creator><creator>Foucher, Eric</creator><creator>Boudry, Pierre</creator><creator>Charrier, Grégory</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5150-2276</orcidid><orcidid>https://orcid.org/0000-0002-5832-8856</orcidid><orcidid>https://orcid.org/0000-0002-8730-9267</orcidid><orcidid>https://orcid.org/0000-0001-5415-3326</orcidid><orcidid>https://orcid.org/0000-0002-3704-2947</orcidid><orcidid>https://orcid.org/0000-0001-7590-2736</orcidid></search><sort><creationdate>202010</creationdate><title>New insights on the population genetic structure of the great scallop (Pecten maximus) in the English Channel, coupling microsatellite data and demogenetic simulations</title><author>Handal, William ; Szostek, Claire ; Hold, Natalie ; Andrello, Marco ; Thiébaut, Eric ; Harney, Ewan ; Lefebvre, Gwendoline ; Borcier, Elodie ; Jolivet, Aurélie ; Nicolle, Amandine ; Boyé, Aurélien ; Foucher, Eric ; Boudry, Pierre ; Charrier, Grégory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3616-7082798fc8a44d90ebf0b0eb58f6d2ad2ee1c30db436dab7881f8a7493639b2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal biology</topic><topic>Biology</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Empirical analysis</topic><topic>English Channel</topic><topic>Fisheries</topic><topic>Fisheries management</topic><topic>Fishing</topic><topic>Fishing effort</topic><topic>Fishing grounds</topic><topic>Fishing zones</topic><topic>Gene flow</topic><topic>Genetic analysis</topic><topic>genetic modelling</topic><topic>genetic resources management</topic><topic>Genetic structure</topic><topic>great scallop</topic><topic>Larvae</topic><topic>Life Sciences</topic><topic>low genetic structure</topic><topic>Marine molluscs</topic><topic>Microsatellites</topic><topic>Mollusks</topic><topic>Ocean, Atmosphere</topic><topic>Pecten maximus</topic><topic>Population</topic><topic>Population biology</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Populations</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handal, William</creatorcontrib><creatorcontrib>Szostek, Claire</creatorcontrib><creatorcontrib>Hold, Natalie</creatorcontrib><creatorcontrib>Andrello, Marco</creatorcontrib><creatorcontrib>Thiébaut, Eric</creatorcontrib><creatorcontrib>Harney, Ewan</creatorcontrib><creatorcontrib>Lefebvre, Gwendoline</creatorcontrib><creatorcontrib>Borcier, Elodie</creatorcontrib><creatorcontrib>Jolivet, Aurélie</creatorcontrib><creatorcontrib>Nicolle, Amandine</creatorcontrib><creatorcontrib>Boyé, Aurélien</creatorcontrib><creatorcontrib>Foucher, Eric</creatorcontrib><creatorcontrib>Boudry, Pierre</creatorcontrib><creatorcontrib>Charrier, Grégory</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Aquatic conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handal, William</au><au>Szostek, Claire</au><au>Hold, Natalie</au><au>Andrello, Marco</au><au>Thiébaut, Eric</au><au>Harney, Ewan</au><au>Lefebvre, Gwendoline</au><au>Borcier, Elodie</au><au>Jolivet, Aurélie</au><au>Nicolle, Amandine</au><au>Boyé, Aurélien</au><au>Foucher, Eric</au><au>Boudry, Pierre</au><au>Charrier, Grégory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights on the population genetic structure of the great scallop (Pecten maximus) in the English Channel, coupling microsatellite data and demogenetic simulations</atitle><jtitle>Aquatic conservation</jtitle><date>2020-10</date><risdate>2020</risdate><volume>30</volume><issue>10</issue><spage>1841</spage><epage>1853</epage><pages>1841-1853</pages><issn>1052-7613</issn><eissn>1099-0755</eissn><abstract>The great scallop (Pecten maximus) is a commercially important bivalve in Europe, particularly in the English Channel, where fisheries are managed at regional and local scales through the regulation of fishing effort. In the long term, knowledge about larval dispersal and gene flow between populations is essential to ensure proper stock management. Yet, previous population genetic studies have reported contradictory results. In this study, scallop samples collected across the main fishing grounds along the French and English coasts of the English Channel (20 samples with temporal replicates for three sites, n = 1059 individuals), and the population genetic structure was analysed using 13 microsatellite loci. Coupling empirical genetic data with demogenetic modelling based on a biophysical model simulating larval exchanges among scallop beds revealed a subtle genetic differentiation between south‐west English populations and the rest of the English Channel, which was consistent with larval dispersal simulations. The present study provides a step forward in the understanding of great scallop population biology in the English Channel, underlining the fact that even in a context of potentially high gene flow and recent divergence times since the end of the last glacial maximum, weak but significant spatial genetic structure can be identified at a regional scale.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aqc.3316</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5150-2276</orcidid><orcidid>https://orcid.org/0000-0002-5832-8856</orcidid><orcidid>https://orcid.org/0000-0002-8730-9267</orcidid><orcidid>https://orcid.org/0000-0001-5415-3326</orcidid><orcidid>https://orcid.org/0000-0002-3704-2947</orcidid><orcidid>https://orcid.org/0000-0001-7590-2736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1052-7613
ispartof Aquatic conservation, 2020-10, Vol.30 (10), p.1841-1853
issn 1052-7613
1099-0755
language eng
recordid cdi_hal_primary_oai_HAL_hal_02956416v1
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Animal biology
Biology
Computer simulation
Coupling
Dispersal
Dispersion
Empirical analysis
English Channel
Fisheries
Fisheries management
Fishing
Fishing effort
Fishing grounds
Fishing zones
Gene flow
Genetic analysis
genetic modelling
genetic resources management
Genetic structure
great scallop
Larvae
Life Sciences
low genetic structure
Marine molluscs
Microsatellites
Mollusks
Ocean, Atmosphere
Pecten maximus
Population
Population biology
Population genetics
Population studies
Populations
Sciences of the Universe
title New insights on the population genetic structure of the great scallop (Pecten maximus) in the English Channel, coupling microsatellite data and demogenetic simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20on%20the%20population%20genetic%20structure%20of%20the%20great%20scallop%20(Pecten%20maximus)%20in%20the%20English%20Channel,%20coupling%20microsatellite%20data%20and%20demogenetic%20simulations&rft.jtitle=Aquatic%20conservation&rft.au=Handal,%20William&rft.date=2020-10&rft.volume=30&rft.issue=10&rft.spage=1841&rft.epage=1853&rft.pages=1841-1853&rft.issn=1052-7613&rft.eissn=1099-0755&rft_id=info:doi/10.1002/aqc.3316&rft_dat=%3Cproquest_hal_p%3E2448677577%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3616-7082798fc8a44d90ebf0b0eb58f6d2ad2ee1c30db436dab7881f8a7493639b2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448677577&rft_id=info:pmid/&rfr_iscdi=true