Loading…

Gate length dependent transport properties of in-plane core-shell nanowires with raised contacts

Three-dimensional (3D) nanoscale crystal shaping has become essential for the precise design of advanced electronic and quantum devices based on electrically gated transport. In this context, III-V semiconductor-based nanowires with low electron effective mass and strong spin-orbit coupling are part...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2020, Vol.13 (1), p.61-66
Main Authors: Bucamp, Alexandre, Coinon, Christophe, Troadec, David, Lepilliet, Sylvie, Patriarche, Gilles, Wallart, Xavier, Desplanque, Ludovic
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional (3D) nanoscale crystal shaping has become essential for the precise design of advanced electronic and quantum devices based on electrically gated transport. In this context, III-V semiconductor-based nanowires with low electron effective mass and strong spin-orbit coupling are particularly investigated because of their exceptional quantum transport properties and the good electrostatic control they provide. Among the main challenges involved in the processing of these nanodevices are (i) the management of the gate stack which requires ex-situ passivation treatment to reduce the density of traps at the oxide/semiconductor interface, (ii) the ability to get good ohmic contacts for source and drain electrodes and (iii) the scalability and reliability of the process for the fabrication of complex architectures based on nanowire networks. In this paper, we show that selective area molecular beam epitaxy of in-plane InGaAs/InP core-shell nanowires with raised heavily doped source and drain contacts can address these different issues. Electrical characterization of the devices down to 4 K reveals the positive impact of the InP shell on the gate electrostatic control and effective electron mobility. Although comparable to the best reported values for In(Ga)As nanostructures grown on InP, this latter is severely reduced for sub-100 nm channel highlighting remaining issue to reach the ballistic regime.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-019-2572-8