Loading…

A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics

In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2021-01, Vol.425, p.109910, Article 109910
Main Authors: Hume, Laurène, Poncet, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53
cites cdi_FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53
container_end_page
container_issue
container_start_page 109910
container_title Journal of computational physics
container_volume 425
creator Hume, Laurène
Poncet, Philippe
description In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split apart the diffusion (inherited from Stokes equation) and the penalization phenomena (which takes into account the solid matrix). By means of the numerical analysis of the splitting, we exhibit the penalization coefficient which is actually effective. This method allows to deal only with fast-evaluation operators, that is to say scaling at most as O(nlog⁡n) where n is the number of underlying grid points, such as straightforward computations of finite differences schemes or FFT solver. The numerical analysis and implementation solutions are presented, and validated on various digital rock physics geometries acquired by micro-tomography, using numerical and physical diagnostics. To enforce this validation, we also present permeability estimations of several porous samples. The simulation of transport of passive and active scalars is finally investigated in order to perform the practical upscaling to 1D models of transport and diffusion at the Darcy scale.
doi_str_mv 10.1016/j.jcp.2020.109910
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02976234v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120306847</els_id><sourcerecordid>2477270955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcLPEiUOKH0kci1NVnlIlLnA2ruM0DmkdbDdV_h5HQRw57ezuzGh3ALjGaIERzu-aRaO6BUFk7DnH6ATMIkAJYTg_BTOECE54XJyDC-8bhFCRpcUMfC5hr1urTBiS3rpgRgR3OtS2hJV1sDbbuh1gb7yyBw_pA6xae_TwaEINZde1Rslg7B4GC0uzNUG20Fn1Bbt68Eb5S3BWydbrq986Bx9Pj--rl2T99vy6Wq4TlSISEs6QzLINo2VGeJFqtSFE5lnFC54rnucqLxXjrKIFrWJDykxTqaXcyJRWfJPRObidfGvZis6ZnXSDsNKIl-VajDNEOMsJTXscuTcTt3P2-6B9EI09uH08T5CUMcIQz0ZHPLGUs947Xf3ZYiTG0EUjYuhiDF1MoUfN_aTR8dXeaCe8MnqvdGmcVkGU1vyj_gHq2Im1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477270955</pqid></control><display><type>article</type><title>A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hume, Laurène ; Poncet, Philippe</creator><creatorcontrib>Hume, Laurène ; Poncet, Philippe</creatorcontrib><description>In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split apart the diffusion (inherited from Stokes equation) and the penalization phenomena (which takes into account the solid matrix). By means of the numerical analysis of the splitting, we exhibit the penalization coefficient which is actually effective. This method allows to deal only with fast-evaluation operators, that is to say scaling at most as O(nlog⁡n) where n is the number of underlying grid points, such as straightforward computations of finite differences schemes or FFT solver. The numerical analysis and implementation solutions are presented, and validated on various digital rock physics geometries acquired by micro-tomography, using numerical and physical diagnostics. To enforce this validation, we also present permeability estimations of several porous samples. The simulation of transport of passive and active scalars is finally investigated in order to perform the practical upscaling to 1D models of transport and diffusion at the Darcy scale.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.109910</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Analysis of PDEs ; Complex geometry ; Computational fluid dynamics ; Computational physics ; Digital rock physics ; Fluid flow ; Fluid mechanics ; Geo-sciences ; Incompressible flow ; Iterative methods ; Mathematics ; Mechanics ; Microtomography ; Numerical Analysis ; One dimensional models ; Operators (mathematics) ; Particle methods ; Penalization ; Physics ; Porous media ; Scalars ; Splitting ; Three dimensional bodies ; Three dimensional flow ; Vorticity</subject><ispartof>Journal of computational physics, 2021-01, Vol.425, p.109910, Article 109910</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jan 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53</citedby><cites>FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53</cites><orcidid>0000-0001-7331-077X ; 0000-0002-9464-0492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02976234$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hume, Laurène</creatorcontrib><creatorcontrib>Poncet, Philippe</creatorcontrib><title>A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics</title><title>Journal of computational physics</title><description>In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split apart the diffusion (inherited from Stokes equation) and the penalization phenomena (which takes into account the solid matrix). By means of the numerical analysis of the splitting, we exhibit the penalization coefficient which is actually effective. This method allows to deal only with fast-evaluation operators, that is to say scaling at most as O(nlog⁡n) where n is the number of underlying grid points, such as straightforward computations of finite differences schemes or FFT solver. The numerical analysis and implementation solutions are presented, and validated on various digital rock physics geometries acquired by micro-tomography, using numerical and physical diagnostics. To enforce this validation, we also present permeability estimations of several porous samples. The simulation of transport of passive and active scalars is finally investigated in order to perform the practical upscaling to 1D models of transport and diffusion at the Darcy scale.</description><subject>Analysis of PDEs</subject><subject>Complex geometry</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Digital rock physics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geo-sciences</subject><subject>Incompressible flow</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Microtomography</subject><subject>Numerical Analysis</subject><subject>One dimensional models</subject><subject>Operators (mathematics)</subject><subject>Particle methods</subject><subject>Penalization</subject><subject>Physics</subject><subject>Porous media</subject><subject>Scalars</subject><subject>Splitting</subject><subject>Three dimensional bodies</subject><subject>Three dimensional flow</subject><subject>Vorticity</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcLPEiUOKH0kci1NVnlIlLnA2ruM0DmkdbDdV_h5HQRw57ezuzGh3ALjGaIERzu-aRaO6BUFk7DnH6ATMIkAJYTg_BTOECE54XJyDC-8bhFCRpcUMfC5hr1urTBiS3rpgRgR3OtS2hJV1sDbbuh1gb7yyBw_pA6xae_TwaEINZde1Rslg7B4GC0uzNUG20Fn1Bbt68Eb5S3BWydbrq986Bx9Pj--rl2T99vy6Wq4TlSISEs6QzLINo2VGeJFqtSFE5lnFC54rnucqLxXjrKIFrWJDykxTqaXcyJRWfJPRObidfGvZis6ZnXSDsNKIl-VajDNEOMsJTXscuTcTt3P2-6B9EI09uH08T5CUMcIQz0ZHPLGUs947Xf3ZYiTG0EUjYuhiDF1MoUfN_aTR8dXeaCe8MnqvdGmcVkGU1vyj_gHq2Im1</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Hume, Laurène</creator><creator>Poncet, Philippe</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7331-077X</orcidid><orcidid>https://orcid.org/0000-0002-9464-0492</orcidid></search><sort><creationdate>20210115</creationdate><title>A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics</title><author>Hume, Laurène ; Poncet, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis of PDEs</topic><topic>Complex geometry</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Digital rock physics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geo-sciences</topic><topic>Incompressible flow</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Microtomography</topic><topic>Numerical Analysis</topic><topic>One dimensional models</topic><topic>Operators (mathematics)</topic><topic>Particle methods</topic><topic>Penalization</topic><topic>Physics</topic><topic>Porous media</topic><topic>Scalars</topic><topic>Splitting</topic><topic>Three dimensional bodies</topic><topic>Three dimensional flow</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hume, Laurène</creatorcontrib><creatorcontrib>Poncet, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hume, Laurène</au><au>Poncet, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics</atitle><jtitle>Journal of computational physics</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>425</volume><spage>109910</spage><pages>109910-</pages><artnum>109910</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split apart the diffusion (inherited from Stokes equation) and the penalization phenomena (which takes into account the solid matrix). By means of the numerical analysis of the splitting, we exhibit the penalization coefficient which is actually effective. This method allows to deal only with fast-evaluation operators, that is to say scaling at most as O(nlog⁡n) where n is the number of underlying grid points, such as straightforward computations of finite differences schemes or FFT solver. The numerical analysis and implementation solutions are presented, and validated on various digital rock physics geometries acquired by micro-tomography, using numerical and physical diagnostics. To enforce this validation, we also present permeability estimations of several porous samples. The simulation of transport of passive and active scalars is finally investigated in order to perform the practical upscaling to 1D models of transport and diffusion at the Darcy scale.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.109910</doi><orcidid>https://orcid.org/0000-0001-7331-077X</orcidid><orcidid>https://orcid.org/0000-0002-9464-0492</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2021-01, Vol.425, p.109910, Article 109910
issn 0021-9991
1090-2716
language eng
recordid cdi_hal_primary_oai_HAL_hal_02976234v1
source ScienceDirect Freedom Collection 2022-2024
subjects Analysis of PDEs
Complex geometry
Computational fluid dynamics
Computational physics
Digital rock physics
Fluid flow
Fluid mechanics
Geo-sciences
Incompressible flow
Iterative methods
Mathematics
Mechanics
Microtomography
Numerical Analysis
One dimensional models
Operators (mathematics)
Particle methods
Penalization
Physics
Porous media
Scalars
Splitting
Three dimensional bodies
Three dimensional flow
Vorticity
title A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20velocity-vorticity%20method%20for%20highly%20viscous%203D%20flows%20with%20application%20to%20digital%20rock%20physics&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Hume,%20Laur%C3%A8ne&rft.date=2021-01-15&rft.volume=425&rft.spage=109910&rft.pages=109910-&rft.artnum=109910&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.109910&rft_dat=%3Cproquest_hal_p%3E2477270955%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477270955&rft_id=info:pmid/&rfr_iscdi=true