Loading…
A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics
In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split...
Saved in:
Published in: | Journal of computational physics 2021-01, Vol.425, p.109910, Article 109910 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53 |
container_end_page | |
container_issue | |
container_start_page | 109910 |
container_title | Journal of computational physics |
container_volume | 425 |
creator | Hume, Laurène Poncet, Philippe |
description | In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split apart the diffusion (inherited from Stokes equation) and the penalization phenomena (which takes into account the solid matrix). By means of the numerical analysis of the splitting, we exhibit the penalization coefficient which is actually effective. This method allows to deal only with fast-evaluation operators, that is to say scaling at most as O(nlogn) where n is the number of underlying grid points, such as straightforward computations of finite differences schemes or FFT solver. The numerical analysis and implementation solutions are presented, and validated on various digital rock physics geometries acquired by micro-tomography, using numerical and physical diagnostics. To enforce this validation, we also present permeability estimations of several porous samples. The simulation of transport of passive and active scalars is finally investigated in order to perform the practical upscaling to 1D models of transport and diffusion at the Darcy scale. |
doi_str_mv | 10.1016/j.jcp.2020.109910 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02976234v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120306847</els_id><sourcerecordid>2477270955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcLPEiUOKH0kci1NVnlIlLnA2ruM0DmkdbDdV_h5HQRw57ezuzGh3ALjGaIERzu-aRaO6BUFk7DnH6ATMIkAJYTg_BTOECE54XJyDC-8bhFCRpcUMfC5hr1urTBiS3rpgRgR3OtS2hJV1sDbbuh1gb7yyBw_pA6xae_TwaEINZde1Rslg7B4GC0uzNUG20Fn1Bbt68Eb5S3BWydbrq986Bx9Pj--rl2T99vy6Wq4TlSISEs6QzLINo2VGeJFqtSFE5lnFC54rnucqLxXjrKIFrWJDykxTqaXcyJRWfJPRObidfGvZis6ZnXSDsNKIl-VajDNEOMsJTXscuTcTt3P2-6B9EI09uH08T5CUMcIQz0ZHPLGUs947Xf3ZYiTG0EUjYuhiDF1MoUfN_aTR8dXeaCe8MnqvdGmcVkGU1vyj_gHq2Im1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477270955</pqid></control><display><type>article</type><title>A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hume, Laurène ; Poncet, Philippe</creator><creatorcontrib>Hume, Laurène ; Poncet, Philippe</creatorcontrib><description>In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split apart the diffusion (inherited from Stokes equation) and the penalization phenomena (which takes into account the solid matrix). By means of the numerical analysis of the splitting, we exhibit the penalization coefficient which is actually effective. This method allows to deal only with fast-evaluation operators, that is to say scaling at most as O(nlogn) where n is the number of underlying grid points, such as straightforward computations of finite differences schemes or FFT solver. The numerical analysis and implementation solutions are presented, and validated on various digital rock physics geometries acquired by micro-tomography, using numerical and physical diagnostics. To enforce this validation, we also present permeability estimations of several porous samples. The simulation of transport of passive and active scalars is finally investigated in order to perform the practical upscaling to 1D models of transport and diffusion at the Darcy scale.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.109910</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Analysis of PDEs ; Complex geometry ; Computational fluid dynamics ; Computational physics ; Digital rock physics ; Fluid flow ; Fluid mechanics ; Geo-sciences ; Incompressible flow ; Iterative methods ; Mathematics ; Mechanics ; Microtomography ; Numerical Analysis ; One dimensional models ; Operators (mathematics) ; Particle methods ; Penalization ; Physics ; Porous media ; Scalars ; Splitting ; Three dimensional bodies ; Three dimensional flow ; Vorticity</subject><ispartof>Journal of computational physics, 2021-01, Vol.425, p.109910, Article 109910</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jan 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53</citedby><cites>FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53</cites><orcidid>0000-0001-7331-077X ; 0000-0002-9464-0492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02976234$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hume, Laurène</creatorcontrib><creatorcontrib>Poncet, Philippe</creatorcontrib><title>A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics</title><title>Journal of computational physics</title><description>In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split apart the diffusion (inherited from Stokes equation) and the penalization phenomena (which takes into account the solid matrix). By means of the numerical analysis of the splitting, we exhibit the penalization coefficient which is actually effective. This method allows to deal only with fast-evaluation operators, that is to say scaling at most as O(nlogn) where n is the number of underlying grid points, such as straightforward computations of finite differences schemes or FFT solver. The numerical analysis and implementation solutions are presented, and validated on various digital rock physics geometries acquired by micro-tomography, using numerical and physical diagnostics. To enforce this validation, we also present permeability estimations of several porous samples. The simulation of transport of passive and active scalars is finally investigated in order to perform the practical upscaling to 1D models of transport and diffusion at the Darcy scale.</description><subject>Analysis of PDEs</subject><subject>Complex geometry</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Digital rock physics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geo-sciences</subject><subject>Incompressible flow</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Microtomography</subject><subject>Numerical Analysis</subject><subject>One dimensional models</subject><subject>Operators (mathematics)</subject><subject>Particle methods</subject><subject>Penalization</subject><subject>Physics</subject><subject>Porous media</subject><subject>Scalars</subject><subject>Splitting</subject><subject>Three dimensional bodies</subject><subject>Three dimensional flow</subject><subject>Vorticity</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcLPEiUOKH0kci1NVnlIlLnA2ruM0DmkdbDdV_h5HQRw57ezuzGh3ALjGaIERzu-aRaO6BUFk7DnH6ATMIkAJYTg_BTOECE54XJyDC-8bhFCRpcUMfC5hr1urTBiS3rpgRgR3OtS2hJV1sDbbuh1gb7yyBw_pA6xae_TwaEINZde1Rslg7B4GC0uzNUG20Fn1Bbt68Eb5S3BWydbrq986Bx9Pj--rl2T99vy6Wq4TlSISEs6QzLINo2VGeJFqtSFE5lnFC54rnucqLxXjrKIFrWJDykxTqaXcyJRWfJPRObidfGvZis6ZnXSDsNKIl-VajDNEOMsJTXscuTcTt3P2-6B9EI09uH08T5CUMcIQz0ZHPLGUs947Xf3ZYiTG0EUjYuhiDF1MoUfN_aTR8dXeaCe8MnqvdGmcVkGU1vyj_gHq2Im1</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Hume, Laurène</creator><creator>Poncet, Philippe</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7331-077X</orcidid><orcidid>https://orcid.org/0000-0002-9464-0492</orcidid></search><sort><creationdate>20210115</creationdate><title>A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics</title><author>Hume, Laurène ; Poncet, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis of PDEs</topic><topic>Complex geometry</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Digital rock physics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geo-sciences</topic><topic>Incompressible flow</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Microtomography</topic><topic>Numerical Analysis</topic><topic>One dimensional models</topic><topic>Operators (mathematics)</topic><topic>Particle methods</topic><topic>Penalization</topic><topic>Physics</topic><topic>Porous media</topic><topic>Scalars</topic><topic>Splitting</topic><topic>Three dimensional bodies</topic><topic>Three dimensional flow</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hume, Laurène</creatorcontrib><creatorcontrib>Poncet, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hume, Laurène</au><au>Poncet, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics</atitle><jtitle>Journal of computational physics</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>425</volume><spage>109910</spage><pages>109910-</pages><artnum>109910</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this article, we present a numerical iterative method for the solution of internal viscous and incompressible flows in real porous three-dimensional bodies at their pore scale. We use the penalized formulation of the problem involving velocity and vorticity: an operator splitting allows to split apart the diffusion (inherited from Stokes equation) and the penalization phenomena (which takes into account the solid matrix). By means of the numerical analysis of the splitting, we exhibit the penalization coefficient which is actually effective. This method allows to deal only with fast-evaluation operators, that is to say scaling at most as O(nlogn) where n is the number of underlying grid points, such as straightforward computations of finite differences schemes or FFT solver. The numerical analysis and implementation solutions are presented, and validated on various digital rock physics geometries acquired by micro-tomography, using numerical and physical diagnostics. To enforce this validation, we also present permeability estimations of several porous samples. The simulation of transport of passive and active scalars is finally investigated in order to perform the practical upscaling to 1D models of transport and diffusion at the Darcy scale.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.109910</doi><orcidid>https://orcid.org/0000-0001-7331-077X</orcidid><orcidid>https://orcid.org/0000-0002-9464-0492</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2021-01, Vol.425, p.109910, Article 109910 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02976234v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Analysis of PDEs Complex geometry Computational fluid dynamics Computational physics Digital rock physics Fluid flow Fluid mechanics Geo-sciences Incompressible flow Iterative methods Mathematics Mechanics Microtomography Numerical Analysis One dimensional models Operators (mathematics) Particle methods Penalization Physics Porous media Scalars Splitting Three dimensional bodies Three dimensional flow Vorticity |
title | A velocity-vorticity method for highly viscous 3D flows with application to digital rock physics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20velocity-vorticity%20method%20for%20highly%20viscous%203D%20flows%20with%20application%20to%20digital%20rock%20physics&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Hume,%20Laur%C3%A8ne&rft.date=2021-01-15&rft.volume=425&rft.spage=109910&rft.pages=109910-&rft.artnum=109910&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.109910&rft_dat=%3Cproquest_hal_p%3E2477270955%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-970a55b73d52984ecb22a65f9896c966c6dc797f383f6c62d5e3aeaaba43f9b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2477270955&rft_id=info:pmid/&rfr_iscdi=true |