Loading…

Diamond semiconductor performances in power electronics applications

This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power swit...

Full description

Saved in:
Bibliographic Details
Published in:Diamond and related materials 2020-12, Vol.110, p.108154, Article 108154
Main Authors: Perez, Gaëtan, Maréchal, Aurélien, Chicot, Gauthier, Lefranc, Pierre, Jeannin, Pierre-Olivier, Eon, David, Rouger, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53
cites cdi_FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53
container_end_page
container_issue
container_start_page 108154
container_title Diamond and related materials
container_volume 110
creator Perez, Gaëtan
Maréchal, Aurélien
Chicot, Gauthier
Lefranc, Pierre
Jeannin, Pierre-Olivier
Eon, David
Rouger, Nicolas
description This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power switching in a buck converter). Models of the diamond devices are discussed based on the experimental data, and the expected performances of the future diamond semiconductors in power converters are presented. These performances are compared to the commercialised SiC Schottky diodes for a given application. Our analysis shows that diamond devices can be used to increase the performance of power converters, especially at high temperatures. We demonstrate that for a junction temperature of 450 K, diamond semiconductors can divide the semiconductor losses and heatsink volume by three, in comparison with SiC devices. We also demonstrate that the switching frequency with diamond devices can be five times higher than with SiC devices, with lower total semiconductor losses and smaller heatsink in diamond-based power converters. This system-level analysis clearly shows the future improvements in the efficiency and power densities of power converters thanks to diamond power devices. The need for management of the specific junction temperature, which is required in order to exploit all of the properties of diamonds, is demonstrated and discussed. [Display omitted] •Comprehensive benchmark of diamond devices for power electronics,•Experimental results supporting the analysis: DC, AC measurements and large signal switching on diamond Schottky diodes,•Benefits of diamond devices are highlighted: 5 times higher switching frequency vs SiC devices, with less total losses,•Limits of temperature management and light load operation with diamond devices are quantitatively described.
doi_str_mv 10.1016/j.diamond.2020.108154
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02988340v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092596352030707X</els_id><sourcerecordid>2489019191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKHgyUPX_GnT5iTLrrrCghc9h3SSYkrb1KS74rc3pYtXmcAMw3uPyQ-hW4JXBBP-0Ky0VZ3r9YpiOu1KkmdnaEHKQqQYc3qOFljQPBWc5ZfoKoQGY0JFRhZou52tSTCdhTgcYHQ-GYyvne9UDyYktk8G9218YloDo3e9hZCoYWgtqNG6Plyji1q1wdyc-hJ9PD-9b3bp_u3ldbPep5CV2ZiCzkFTURU1x4yp-FSlOefCcMMAFIGCFJRXNWdQAaNGg4iHFmWhsyI3OVui-zn3U7Vy8LZT_kc6ZeVuvZfTDlNRlizDRxK1d7N28O7rYMIoG3fwfTxP0qwUmIhYUZXPKvAuBG_qv1iC5QRXNvIEV05w5Qw3-h5nn4nfPVrjZQBrIi1tfWQktbP_JPwCaBKFQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489019191</pqid></control><display><type>article</type><title>Diamond semiconductor performances in power electronics applications</title><source>ScienceDirect Freedom Collection</source><creator>Perez, Gaëtan ; Maréchal, Aurélien ; Chicot, Gauthier ; Lefranc, Pierre ; Jeannin, Pierre-Olivier ; Eon, David ; Rouger, Nicolas</creator><creatorcontrib>Perez, Gaëtan ; Maréchal, Aurélien ; Chicot, Gauthier ; Lefranc, Pierre ; Jeannin, Pierre-Olivier ; Eon, David ; Rouger, Nicolas</creatorcontrib><description>This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power switching in a buck converter). Models of the diamond devices are discussed based on the experimental data, and the expected performances of the future diamond semiconductors in power converters are presented. These performances are compared to the commercialised SiC Schottky diodes for a given application. Our analysis shows that diamond devices can be used to increase the performance of power converters, especially at high temperatures. We demonstrate that for a junction temperature of 450 K, diamond semiconductors can divide the semiconductor losses and heatsink volume by three, in comparison with SiC devices. We also demonstrate that the switching frequency with diamond devices can be five times higher than with SiC devices, with lower total semiconductor losses and smaller heatsink in diamond-based power converters. This system-level analysis clearly shows the future improvements in the efficiency and power densities of power converters thanks to diamond power devices. The need for management of the specific junction temperature, which is required in order to exploit all of the properties of diamonds, is demonstrated and discussed. [Display omitted] •Comprehensive benchmark of diamond devices for power electronics,•Experimental results supporting the analysis: DC, AC measurements and large signal switching on diamond Schottky diodes,•Benefits of diamond devices are highlighted: 5 times higher switching frequency vs SiC devices, with less total losses,•Limits of temperature management and light load operation with diamond devices are quantitatively described.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2020.108154</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Buck converters ; Commercialization ; Diamond ; Diamonds ; Electric converters ; Electric power ; Electronic devices ; Electronics ; Energy conversion efficiency ; Engineering Sciences ; Heat sinks ; Heatsink volume ; Micro and nanotechnologies ; Microelectronics ; Performance comparison ; Power converters ; Schottky diodes ; Self-heating effect ; Semiconductor losses ; Semiconductors ; Silicon carbide ; Switching ; Wide bandgap</subject><ispartof>Diamond and related materials, 2020-12, Vol.110, p.108154, Article 108154</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53</citedby><cites>FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53</cites><orcidid>0000-0002-8032-9185 ; 0000-0002-2161-9043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02988340$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez, Gaëtan</creatorcontrib><creatorcontrib>Maréchal, Aurélien</creatorcontrib><creatorcontrib>Chicot, Gauthier</creatorcontrib><creatorcontrib>Lefranc, Pierre</creatorcontrib><creatorcontrib>Jeannin, Pierre-Olivier</creatorcontrib><creatorcontrib>Eon, David</creatorcontrib><creatorcontrib>Rouger, Nicolas</creatorcontrib><title>Diamond semiconductor performances in power electronics applications</title><title>Diamond and related materials</title><description>This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power switching in a buck converter). Models of the diamond devices are discussed based on the experimental data, and the expected performances of the future diamond semiconductors in power converters are presented. These performances are compared to the commercialised SiC Schottky diodes for a given application. Our analysis shows that diamond devices can be used to increase the performance of power converters, especially at high temperatures. We demonstrate that for a junction temperature of 450 K, diamond semiconductors can divide the semiconductor losses and heatsink volume by three, in comparison with SiC devices. We also demonstrate that the switching frequency with diamond devices can be five times higher than with SiC devices, with lower total semiconductor losses and smaller heatsink in diamond-based power converters. This system-level analysis clearly shows the future improvements in the efficiency and power densities of power converters thanks to diamond power devices. The need for management of the specific junction temperature, which is required in order to exploit all of the properties of diamonds, is demonstrated and discussed. [Display omitted] •Comprehensive benchmark of diamond devices for power electronics,•Experimental results supporting the analysis: DC, AC measurements and large signal switching on diamond Schottky diodes,•Benefits of diamond devices are highlighted: 5 times higher switching frequency vs SiC devices, with less total losses,•Limits of temperature management and light load operation with diamond devices are quantitatively described.</description><subject>Buck converters</subject><subject>Commercialization</subject><subject>Diamond</subject><subject>Diamonds</subject><subject>Electric converters</subject><subject>Electric power</subject><subject>Electronic devices</subject><subject>Electronics</subject><subject>Energy conversion efficiency</subject><subject>Engineering Sciences</subject><subject>Heat sinks</subject><subject>Heatsink volume</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Performance comparison</subject><subject>Power converters</subject><subject>Schottky diodes</subject><subject>Self-heating effect</subject><subject>Semiconductor losses</subject><subject>Semiconductors</subject><subject>Silicon carbide</subject><subject>Switching</subject><subject>Wide bandgap</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKHgyUPX_GnT5iTLrrrCghc9h3SSYkrb1KS74rc3pYtXmcAMw3uPyQ-hW4JXBBP-0Ky0VZ3r9YpiOu1KkmdnaEHKQqQYc3qOFljQPBWc5ZfoKoQGY0JFRhZou52tSTCdhTgcYHQ-GYyvne9UDyYktk8G9218YloDo3e9hZCoYWgtqNG6Plyji1q1wdyc-hJ9PD-9b3bp_u3ldbPep5CV2ZiCzkFTURU1x4yp-FSlOefCcMMAFIGCFJRXNWdQAaNGg4iHFmWhsyI3OVui-zn3U7Vy8LZT_kc6ZeVuvZfTDlNRlizDRxK1d7N28O7rYMIoG3fwfTxP0qwUmIhYUZXPKvAuBG_qv1iC5QRXNvIEV05w5Qw3-h5nn4nfPVrjZQBrIi1tfWQktbP_JPwCaBKFQQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Perez, Gaëtan</creator><creator>Maréchal, Aurélien</creator><creator>Chicot, Gauthier</creator><creator>Lefranc, Pierre</creator><creator>Jeannin, Pierre-Olivier</creator><creator>Eon, David</creator><creator>Rouger, Nicolas</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8032-9185</orcidid><orcidid>https://orcid.org/0000-0002-2161-9043</orcidid></search><sort><creationdate>20201201</creationdate><title>Diamond semiconductor performances in power electronics applications</title><author>Perez, Gaëtan ; Maréchal, Aurélien ; Chicot, Gauthier ; Lefranc, Pierre ; Jeannin, Pierre-Olivier ; Eon, David ; Rouger, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Buck converters</topic><topic>Commercialization</topic><topic>Diamond</topic><topic>Diamonds</topic><topic>Electric converters</topic><topic>Electric power</topic><topic>Electronic devices</topic><topic>Electronics</topic><topic>Energy conversion efficiency</topic><topic>Engineering Sciences</topic><topic>Heat sinks</topic><topic>Heatsink volume</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Performance comparison</topic><topic>Power converters</topic><topic>Schottky diodes</topic><topic>Self-heating effect</topic><topic>Semiconductor losses</topic><topic>Semiconductors</topic><topic>Silicon carbide</topic><topic>Switching</topic><topic>Wide bandgap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Gaëtan</creatorcontrib><creatorcontrib>Maréchal, Aurélien</creatorcontrib><creatorcontrib>Chicot, Gauthier</creatorcontrib><creatorcontrib>Lefranc, Pierre</creatorcontrib><creatorcontrib>Jeannin, Pierre-Olivier</creatorcontrib><creatorcontrib>Eon, David</creatorcontrib><creatorcontrib>Rouger, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Gaëtan</au><au>Maréchal, Aurélien</au><au>Chicot, Gauthier</au><au>Lefranc, Pierre</au><au>Jeannin, Pierre-Olivier</au><au>Eon, David</au><au>Rouger, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diamond semiconductor performances in power electronics applications</atitle><jtitle>Diamond and related materials</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>110</volume><spage>108154</spage><pages>108154-</pages><artnum>108154</artnum><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power switching in a buck converter). Models of the diamond devices are discussed based on the experimental data, and the expected performances of the future diamond semiconductors in power converters are presented. These performances are compared to the commercialised SiC Schottky diodes for a given application. Our analysis shows that diamond devices can be used to increase the performance of power converters, especially at high temperatures. We demonstrate that for a junction temperature of 450 K, diamond semiconductors can divide the semiconductor losses and heatsink volume by three, in comparison with SiC devices. We also demonstrate that the switching frequency with diamond devices can be five times higher than with SiC devices, with lower total semiconductor losses and smaller heatsink in diamond-based power converters. This system-level analysis clearly shows the future improvements in the efficiency and power densities of power converters thanks to diamond power devices. The need for management of the specific junction temperature, which is required in order to exploit all of the properties of diamonds, is demonstrated and discussed. [Display omitted] •Comprehensive benchmark of diamond devices for power electronics,•Experimental results supporting the analysis: DC, AC measurements and large signal switching on diamond Schottky diodes,•Benefits of diamond devices are highlighted: 5 times higher switching frequency vs SiC devices, with less total losses,•Limits of temperature management and light load operation with diamond devices are quantitatively described.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2020.108154</doi><orcidid>https://orcid.org/0000-0002-8032-9185</orcidid><orcidid>https://orcid.org/0000-0002-2161-9043</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2020-12, Vol.110, p.108154, Article 108154
issn 0925-9635
1879-0062
language eng
recordid cdi_hal_primary_oai_HAL_hal_02988340v1
source ScienceDirect Freedom Collection
subjects Buck converters
Commercialization
Diamond
Diamonds
Electric converters
Electric power
Electronic devices
Electronics
Energy conversion efficiency
Engineering Sciences
Heat sinks
Heatsink volume
Micro and nanotechnologies
Microelectronics
Performance comparison
Power converters
Schottky diodes
Self-heating effect
Semiconductor losses
Semiconductors
Silicon carbide
Switching
Wide bandgap
title Diamond semiconductor performances in power electronics applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diamond%20semiconductor%20performances%20in%20power%20electronics%20applications&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Perez,%20Ga%C3%ABtan&rft.date=2020-12-01&rft.volume=110&rft.spage=108154&rft.pages=108154-&rft.artnum=108154&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2020.108154&rft_dat=%3Cproquest_hal_p%3E2489019191%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489019191&rft_id=info:pmid/&rfr_iscdi=true