Loading…
Diamond semiconductor performances in power electronics applications
This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power swit...
Saved in:
Published in: | Diamond and related materials 2020-12, Vol.110, p.108154, Article 108154 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53 |
container_end_page | |
container_issue | |
container_start_page | 108154 |
container_title | Diamond and related materials |
container_volume | 110 |
creator | Perez, Gaëtan Maréchal, Aurélien Chicot, Gauthier Lefranc, Pierre Jeannin, Pierre-Olivier Eon, David Rouger, Nicolas |
description | This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power switching in a buck converter). Models of the diamond devices are discussed based on the experimental data, and the expected performances of the future diamond semiconductors in power converters are presented. These performances are compared to the commercialised SiC Schottky diodes for a given application. Our analysis shows that diamond devices can be used to increase the performance of power converters, especially at high temperatures. We demonstrate that for a junction temperature of 450 K, diamond semiconductors can divide the semiconductor losses and heatsink volume by three, in comparison with SiC devices. We also demonstrate that the switching frequency with diamond devices can be five times higher than with SiC devices, with lower total semiconductor losses and smaller heatsink in diamond-based power converters. This system-level analysis clearly shows the future improvements in the efficiency and power densities of power converters thanks to diamond power devices. The need for management of the specific junction temperature, which is required in order to exploit all of the properties of diamonds, is demonstrated and discussed.
[Display omitted]
•Comprehensive benchmark of diamond devices for power electronics,•Experimental results supporting the analysis: DC, AC measurements and large signal switching on diamond Schottky diodes,•Benefits of diamond devices are highlighted: 5 times higher switching frequency vs SiC devices, with less total losses,•Limits of temperature management and light load operation with diamond devices are quantitatively described. |
doi_str_mv | 10.1016/j.diamond.2020.108154 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02988340v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092596352030707X</els_id><sourcerecordid>2489019191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKHgyUPX_GnT5iTLrrrCghc9h3SSYkrb1KS74rc3pYtXmcAMw3uPyQ-hW4JXBBP-0Ky0VZ3r9YpiOu1KkmdnaEHKQqQYc3qOFljQPBWc5ZfoKoQGY0JFRhZou52tSTCdhTgcYHQ-GYyvne9UDyYktk8G9218YloDo3e9hZCoYWgtqNG6Plyji1q1wdyc-hJ9PD-9b3bp_u3ldbPep5CV2ZiCzkFTURU1x4yp-FSlOefCcMMAFIGCFJRXNWdQAaNGg4iHFmWhsyI3OVui-zn3U7Vy8LZT_kc6ZeVuvZfTDlNRlizDRxK1d7N28O7rYMIoG3fwfTxP0qwUmIhYUZXPKvAuBG_qv1iC5QRXNvIEV05w5Qw3-h5nn4nfPVrjZQBrIi1tfWQktbP_JPwCaBKFQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489019191</pqid></control><display><type>article</type><title>Diamond semiconductor performances in power electronics applications</title><source>ScienceDirect Freedom Collection</source><creator>Perez, Gaëtan ; Maréchal, Aurélien ; Chicot, Gauthier ; Lefranc, Pierre ; Jeannin, Pierre-Olivier ; Eon, David ; Rouger, Nicolas</creator><creatorcontrib>Perez, Gaëtan ; Maréchal, Aurélien ; Chicot, Gauthier ; Lefranc, Pierre ; Jeannin, Pierre-Olivier ; Eon, David ; Rouger, Nicolas</creatorcontrib><description>This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power switching in a buck converter). Models of the diamond devices are discussed based on the experimental data, and the expected performances of the future diamond semiconductors in power converters are presented. These performances are compared to the commercialised SiC Schottky diodes for a given application. Our analysis shows that diamond devices can be used to increase the performance of power converters, especially at high temperatures. We demonstrate that for a junction temperature of 450 K, diamond semiconductors can divide the semiconductor losses and heatsink volume by three, in comparison with SiC devices. We also demonstrate that the switching frequency with diamond devices can be five times higher than with SiC devices, with lower total semiconductor losses and smaller heatsink in diamond-based power converters. This system-level analysis clearly shows the future improvements in the efficiency and power densities of power converters thanks to diamond power devices. The need for management of the specific junction temperature, which is required in order to exploit all of the properties of diamonds, is demonstrated and discussed.
[Display omitted]
•Comprehensive benchmark of diamond devices for power electronics,•Experimental results supporting the analysis: DC, AC measurements and large signal switching on diamond Schottky diodes,•Benefits of diamond devices are highlighted: 5 times higher switching frequency vs SiC devices, with less total losses,•Limits of temperature management and light load operation with diamond devices are quantitatively described.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2020.108154</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Buck converters ; Commercialization ; Diamond ; Diamonds ; Electric converters ; Electric power ; Electronic devices ; Electronics ; Energy conversion efficiency ; Engineering Sciences ; Heat sinks ; Heatsink volume ; Micro and nanotechnologies ; Microelectronics ; Performance comparison ; Power converters ; Schottky diodes ; Self-heating effect ; Semiconductor losses ; Semiconductors ; Silicon carbide ; Switching ; Wide bandgap</subject><ispartof>Diamond and related materials, 2020-12, Vol.110, p.108154, Article 108154</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53</citedby><cites>FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53</cites><orcidid>0000-0002-8032-9185 ; 0000-0002-2161-9043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02988340$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez, Gaëtan</creatorcontrib><creatorcontrib>Maréchal, Aurélien</creatorcontrib><creatorcontrib>Chicot, Gauthier</creatorcontrib><creatorcontrib>Lefranc, Pierre</creatorcontrib><creatorcontrib>Jeannin, Pierre-Olivier</creatorcontrib><creatorcontrib>Eon, David</creatorcontrib><creatorcontrib>Rouger, Nicolas</creatorcontrib><title>Diamond semiconductor performances in power electronics applications</title><title>Diamond and related materials</title><description>This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power switching in a buck converter). Models of the diamond devices are discussed based on the experimental data, and the expected performances of the future diamond semiconductors in power converters are presented. These performances are compared to the commercialised SiC Schottky diodes for a given application. Our analysis shows that diamond devices can be used to increase the performance of power converters, especially at high temperatures. We demonstrate that for a junction temperature of 450 K, diamond semiconductors can divide the semiconductor losses and heatsink volume by three, in comparison with SiC devices. We also demonstrate that the switching frequency with diamond devices can be five times higher than with SiC devices, with lower total semiconductor losses and smaller heatsink in diamond-based power converters. This system-level analysis clearly shows the future improvements in the efficiency and power densities of power converters thanks to diamond power devices. The need for management of the specific junction temperature, which is required in order to exploit all of the properties of diamonds, is demonstrated and discussed.
[Display omitted]
•Comprehensive benchmark of diamond devices for power electronics,•Experimental results supporting the analysis: DC, AC measurements and large signal switching on diamond Schottky diodes,•Benefits of diamond devices are highlighted: 5 times higher switching frequency vs SiC devices, with less total losses,•Limits of temperature management and light load operation with diamond devices are quantitatively described.</description><subject>Buck converters</subject><subject>Commercialization</subject><subject>Diamond</subject><subject>Diamonds</subject><subject>Electric converters</subject><subject>Electric power</subject><subject>Electronic devices</subject><subject>Electronics</subject><subject>Energy conversion efficiency</subject><subject>Engineering Sciences</subject><subject>Heat sinks</subject><subject>Heatsink volume</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Performance comparison</subject><subject>Power converters</subject><subject>Schottky diodes</subject><subject>Self-heating effect</subject><subject>Semiconductor losses</subject><subject>Semiconductors</subject><subject>Silicon carbide</subject><subject>Switching</subject><subject>Wide bandgap</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKHgyUPX_GnT5iTLrrrCghc9h3SSYkrb1KS74rc3pYtXmcAMw3uPyQ-hW4JXBBP-0Ky0VZ3r9YpiOu1KkmdnaEHKQqQYc3qOFljQPBWc5ZfoKoQGY0JFRhZou52tSTCdhTgcYHQ-GYyvne9UDyYktk8G9218YloDo3e9hZCoYWgtqNG6Plyji1q1wdyc-hJ9PD-9b3bp_u3ldbPep5CV2ZiCzkFTURU1x4yp-FSlOefCcMMAFIGCFJRXNWdQAaNGg4iHFmWhsyI3OVui-zn3U7Vy8LZT_kc6ZeVuvZfTDlNRlizDRxK1d7N28O7rYMIoG3fwfTxP0qwUmIhYUZXPKvAuBG_qv1iC5QRXNvIEV05w5Qw3-h5nn4nfPVrjZQBrIi1tfWQktbP_JPwCaBKFQQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Perez, Gaëtan</creator><creator>Maréchal, Aurélien</creator><creator>Chicot, Gauthier</creator><creator>Lefranc, Pierre</creator><creator>Jeannin, Pierre-Olivier</creator><creator>Eon, David</creator><creator>Rouger, Nicolas</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8032-9185</orcidid><orcidid>https://orcid.org/0000-0002-2161-9043</orcidid></search><sort><creationdate>20201201</creationdate><title>Diamond semiconductor performances in power electronics applications</title><author>Perez, Gaëtan ; Maréchal, Aurélien ; Chicot, Gauthier ; Lefranc, Pierre ; Jeannin, Pierre-Olivier ; Eon, David ; Rouger, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Buck converters</topic><topic>Commercialization</topic><topic>Diamond</topic><topic>Diamonds</topic><topic>Electric converters</topic><topic>Electric power</topic><topic>Electronic devices</topic><topic>Electronics</topic><topic>Energy conversion efficiency</topic><topic>Engineering Sciences</topic><topic>Heat sinks</topic><topic>Heatsink volume</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Performance comparison</topic><topic>Power converters</topic><topic>Schottky diodes</topic><topic>Self-heating effect</topic><topic>Semiconductor losses</topic><topic>Semiconductors</topic><topic>Silicon carbide</topic><topic>Switching</topic><topic>Wide bandgap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Gaëtan</creatorcontrib><creatorcontrib>Maréchal, Aurélien</creatorcontrib><creatorcontrib>Chicot, Gauthier</creatorcontrib><creatorcontrib>Lefranc, Pierre</creatorcontrib><creatorcontrib>Jeannin, Pierre-Olivier</creatorcontrib><creatorcontrib>Eon, David</creatorcontrib><creatorcontrib>Rouger, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Gaëtan</au><au>Maréchal, Aurélien</au><au>Chicot, Gauthier</au><au>Lefranc, Pierre</au><au>Jeannin, Pierre-Olivier</au><au>Eon, David</au><au>Rouger, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diamond semiconductor performances in power electronics applications</atitle><jtitle>Diamond and related materials</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>110</volume><spage>108154</spage><pages>108154-</pages><artnum>108154</artnum><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>This paper proposes a system-level comparison between diamond and silicon carbide (SiC) power devices. It highlights the benefits of diamond semiconductors for power electronics applications. Actual diamond power devices were fabricated and characterised (DC, AC small-signal, large-signal power switching in a buck converter). Models of the diamond devices are discussed based on the experimental data, and the expected performances of the future diamond semiconductors in power converters are presented. These performances are compared to the commercialised SiC Schottky diodes for a given application. Our analysis shows that diamond devices can be used to increase the performance of power converters, especially at high temperatures. We demonstrate that for a junction temperature of 450 K, diamond semiconductors can divide the semiconductor losses and heatsink volume by three, in comparison with SiC devices. We also demonstrate that the switching frequency with diamond devices can be five times higher than with SiC devices, with lower total semiconductor losses and smaller heatsink in diamond-based power converters. This system-level analysis clearly shows the future improvements in the efficiency and power densities of power converters thanks to diamond power devices. The need for management of the specific junction temperature, which is required in order to exploit all of the properties of diamonds, is demonstrated and discussed.
[Display omitted]
•Comprehensive benchmark of diamond devices for power electronics,•Experimental results supporting the analysis: DC, AC measurements and large signal switching on diamond Schottky diodes,•Benefits of diamond devices are highlighted: 5 times higher switching frequency vs SiC devices, with less total losses,•Limits of temperature management and light load operation with diamond devices are quantitatively described.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2020.108154</doi><orcidid>https://orcid.org/0000-0002-8032-9185</orcidid><orcidid>https://orcid.org/0000-0002-2161-9043</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2020-12, Vol.110, p.108154, Article 108154 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02988340v1 |
source | ScienceDirect Freedom Collection |
subjects | Buck converters Commercialization Diamond Diamonds Electric converters Electric power Electronic devices Electronics Energy conversion efficiency Engineering Sciences Heat sinks Heatsink volume Micro and nanotechnologies Microelectronics Performance comparison Power converters Schottky diodes Self-heating effect Semiconductor losses Semiconductors Silicon carbide Switching Wide bandgap |
title | Diamond semiconductor performances in power electronics applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diamond%20semiconductor%20performances%20in%20power%20electronics%20applications&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Perez,%20Ga%C3%ABtan&rft.date=2020-12-01&rft.volume=110&rft.spage=108154&rft.pages=108154-&rft.artnum=108154&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2020.108154&rft_dat=%3Cproquest_hal_p%3E2489019191%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-cd5cd29b7f6033a33aabd6669e6e3cca1c71726bf63cbc32edc9001787d475e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489019191&rft_id=info:pmid/&rfr_iscdi=true |