Loading…
Frustrated Bearings
In a bearing state, touching spheres (disks in two dimensions) roll on each other without slip. Here we frustrate a system of touching spheres by imposing two different bearing states on opposite sides and search for the configurations of lowest energy dissipation. If the dissipation between contact...
Saved in:
Published in: | Physical review letters 2020-09, Vol.125 (10), p.1-104301, Article 104301 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a bearing state, touching spheres (disks in two dimensions) roll on each other without slip. Here we frustrate a system of touching spheres by imposing two different bearing states on opposite sides and search for the configurations of lowest energy dissipation. If the dissipation between contacts of spheres is viscous (with random damping constants), the angular momentum continuously changes from one bearing state to the other. For Coulomb friction (with random friction coefficients) in two dimensions, a sharp line separates the two bearing states and we show that this line corresponds to the minimum cut. Astonishingly, however, in three dimensions intermediate bearing domains that are not synchronized with either side are energetically more favorable than the minimum-cut surface. Instead of a sharp cut, the steady state displays a fragmented structure. This novel type of state of minimum dissipation is characterized by a spanning network of slipless contacts that reaches every sphere. Such a situation becomes possible because in three dimensions bearing states have four degrees of freedom. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.125.104301 |