Loading…

Understanding nebular spectra of Type Ia supernovae

ABSTRACT In this study, we present one-dimensional, non-local-thermodynamic-equilibrium, radiative transfer simulations (using cmfgen) in which we introduce micro-clumping at nebular times into two Type Ia supernova ejecta models. We use one sub-Chandrasekhar (sub-MCh) ejecta model with 1.04 M⊙ and...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2020-05, Vol.494 (2), p.2221-2235
Main Authors: Wilk, Kevin D, Hillier, D John, Dessart, Luc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT In this study, we present one-dimensional, non-local-thermodynamic-equilibrium, radiative transfer simulations (using cmfgen) in which we introduce micro-clumping at nebular times into two Type Ia supernova ejecta models. We use one sub-Chandrasekhar (sub-MCh) ejecta model with 1.04 M⊙ and one Chandrasekhar (MCh) ejecta model with 1.40 M⊙. We introduce clumping factors f = 0.33, 0.25, and 0.10, which are constant throughout the ejecta, and compare results to the unclumped f = 1.0 case. We find that clumping is a natural mechanism to reduce the ionization of the ejecta, reducing emission from [Fe iii], [Ar iii], and [S iii] by a factor of a few. For decreasing values of the clumping factor f, the [Ca ii] λλ7291,7324 doublet became a dominant cooling line for our MCh model but remained weak in our sub-MCh model. Strong [Ca ii] λλ7291,7324 indicates non-thermal heating in that region and may constrain explosion modelling. Due to the low abundance of stable nickel, our sub-MCh model never showed the [Ni ii] 1.939-μm diagnostic feature for all clumping values.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/staa640