Loading…

Charge transfers and charged defects in WSe 2 /graphene-SiC interfaces

We report on Kelvin probe force microscopy (KPFM) and density functional theory (DFT) investigations of charge transfers in vertical heterojunctions between tungsten diselenide (WSe ) layers and graphene on silicon carbide substrates. The experimental data reveal the existence of an interface dipole...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2020-04, Vol.31 (25), p.255709
Main Authors: Dappe, Y J, Almadori, Y, Dau, M T, Vergnaud, C, Jamet, M, Paillet, C, Journot, T, Hyot, B, Pochet, P, Grévin, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1456-5470efc3d1118abcf8288a055d01338a3f2f8656047c16323261815ad10215543
cites cdi_FETCH-LOGICAL-c1456-5470efc3d1118abcf8288a055d01338a3f2f8656047c16323261815ad10215543
container_end_page
container_issue 25
container_start_page 255709
container_title Nanotechnology
container_volume 31
creator Dappe, Y J
Almadori, Y
Dau, M T
Vergnaud, C
Jamet, M
Paillet, C
Journot, T
Hyot, B
Pochet, P
Grévin, B
description We report on Kelvin probe force microscopy (KPFM) and density functional theory (DFT) investigations of charge transfers in vertical heterojunctions between tungsten diselenide (WSe ) layers and graphene on silicon carbide substrates. The experimental data reveal the existence of an interface dipole, which is shown by DFT to originate from the neutralization of the graphene n-doping by an electron transfer towards the transition metal dichalcogenide (TMD) layer. The relative vacuum level shift probed by KPFM between the TMD and the substrate stays constant when passing from monolayer to bilayer graphene, which confirms that the Schottky-Mott model can be rigorously applied to these interfaces by taking into account the charge transfer from the substrate to the TMD. DFT calculations show that the first TMD layer absorbs almost all the excess charges contained in the graphene, and that the second TMD layer shall not play a significant role in the electrostatics of the system. Negatively charged defect at the TMD edges contribute however to the electrostatic landscape probed by KPFM on both TMD layers.
doi_str_mv 10.1088/1361-6528/ab8083
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02989896v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02989896v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1456-5470efc3d1118abcf8288a055d01338a3f2f8656047c16323261815ad10215543</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoModq3ePUmuHtZm8tX0WBZrhYKHKh7DNB_tSrstSRX89-66WuYww8O8w_AQcgvsAZgxIxAaSq24GeHKMCPOSHFC56RgEzUupTRyQK5y_mAMwHC4JAPB20FNdEFm1QbTOtBjwibHkDLFxlP3Cz31IQZ3zLRu6PsyUE5H64SHTWhCuayrFh9DiuhCviYXEbc53Pz1IXmbPb5W83Lx8vRcTRelA6l0qeSYheiEh_YTXLlouDHIlPIMhDAoIo9GK83k2IEWXHANBhR6YByUkmJI7vu7G9zaQ6p3mL7tHms7ny5sxxifmLb0F7S7rN91aZ9zCvEUAGY7fbZzZTtXttfXRu76yOFztQv-FPj3JX4AoXFnJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Charge transfers and charged defects in WSe 2 /graphene-SiC interfaces</title><source>Institute of Physics</source><creator>Dappe, Y J ; Almadori, Y ; Dau, M T ; Vergnaud, C ; Jamet, M ; Paillet, C ; Journot, T ; Hyot, B ; Pochet, P ; Grévin, B</creator><creatorcontrib>Dappe, Y J ; Almadori, Y ; Dau, M T ; Vergnaud, C ; Jamet, M ; Paillet, C ; Journot, T ; Hyot, B ; Pochet, P ; Grévin, B</creatorcontrib><description>We report on Kelvin probe force microscopy (KPFM) and density functional theory (DFT) investigations of charge transfers in vertical heterojunctions between tungsten diselenide (WSe ) layers and graphene on silicon carbide substrates. The experimental data reveal the existence of an interface dipole, which is shown by DFT to originate from the neutralization of the graphene n-doping by an electron transfer towards the transition metal dichalcogenide (TMD) layer. The relative vacuum level shift probed by KPFM between the TMD and the substrate stays constant when passing from monolayer to bilayer graphene, which confirms that the Schottky-Mott model can be rigorously applied to these interfaces by taking into account the charge transfer from the substrate to the TMD. DFT calculations show that the first TMD layer absorbs almost all the excess charges contained in the graphene, and that the second TMD layer shall not play a significant role in the electrostatics of the system. Negatively charged defect at the TMD edges contribute however to the electrostatic landscape probed by KPFM on both TMD layers.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ab8083</identifier><identifier>PMID: 32182596</identifier><language>eng</language><publisher>England: Institute of Physics</publisher><subject>Physics</subject><ispartof>Nanotechnology, 2020-04, Vol.31 (25), p.255709</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1456-5470efc3d1118abcf8288a055d01338a3f2f8656047c16323261815ad10215543</citedby><cites>FETCH-LOGICAL-c1456-5470efc3d1118abcf8288a055d01338a3f2f8656047c16323261815ad10215543</cites><orcidid>0000-0002-1358-3474 ; 0000-0002-8247-4677 ; 0000-0001-5224-9535 ; 0000-0001-6021-9256 ; 0000-0002-1521-973X ; 0000-0002-6494-8138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32182596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02989896$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dappe, Y J</creatorcontrib><creatorcontrib>Almadori, Y</creatorcontrib><creatorcontrib>Dau, M T</creatorcontrib><creatorcontrib>Vergnaud, C</creatorcontrib><creatorcontrib>Jamet, M</creatorcontrib><creatorcontrib>Paillet, C</creatorcontrib><creatorcontrib>Journot, T</creatorcontrib><creatorcontrib>Hyot, B</creatorcontrib><creatorcontrib>Pochet, P</creatorcontrib><creatorcontrib>Grévin, B</creatorcontrib><title>Charge transfers and charged defects in WSe 2 /graphene-SiC interfaces</title><title>Nanotechnology</title><addtitle>Nanotechnology</addtitle><description>We report on Kelvin probe force microscopy (KPFM) and density functional theory (DFT) investigations of charge transfers in vertical heterojunctions between tungsten diselenide (WSe ) layers and graphene on silicon carbide substrates. The experimental data reveal the existence of an interface dipole, which is shown by DFT to originate from the neutralization of the graphene n-doping by an electron transfer towards the transition metal dichalcogenide (TMD) layer. The relative vacuum level shift probed by KPFM between the TMD and the substrate stays constant when passing from monolayer to bilayer graphene, which confirms that the Schottky-Mott model can be rigorously applied to these interfaces by taking into account the charge transfer from the substrate to the TMD. DFT calculations show that the first TMD layer absorbs almost all the excess charges contained in the graphene, and that the second TMD layer shall not play a significant role in the electrostatics of the system. Negatively charged defect at the TMD edges contribute however to the electrostatic landscape probed by KPFM on both TMD layers.</description><subject>Physics</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoModq3ePUmuHtZm8tX0WBZrhYKHKh7DNB_tSrstSRX89-66WuYww8O8w_AQcgvsAZgxIxAaSq24GeHKMCPOSHFC56RgEzUupTRyQK5y_mAMwHC4JAPB20FNdEFm1QbTOtBjwibHkDLFxlP3Cz31IQZ3zLRu6PsyUE5H64SHTWhCuayrFh9DiuhCviYXEbc53Pz1IXmbPb5W83Lx8vRcTRelA6l0qeSYheiEh_YTXLlouDHIlPIMhDAoIo9GK83k2IEWXHANBhR6YByUkmJI7vu7G9zaQ6p3mL7tHms7ny5sxxifmLb0F7S7rN91aZ9zCvEUAGY7fbZzZTtXttfXRu76yOFztQv-FPj3JX4AoXFnJA</recordid><startdate>20200403</startdate><enddate>20200403</enddate><creator>Dappe, Y J</creator><creator>Almadori, Y</creator><creator>Dau, M T</creator><creator>Vergnaud, C</creator><creator>Jamet, M</creator><creator>Paillet, C</creator><creator>Journot, T</creator><creator>Hyot, B</creator><creator>Pochet, P</creator><creator>Grévin, B</creator><general>Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1358-3474</orcidid><orcidid>https://orcid.org/0000-0002-8247-4677</orcidid><orcidid>https://orcid.org/0000-0001-5224-9535</orcidid><orcidid>https://orcid.org/0000-0001-6021-9256</orcidid><orcidid>https://orcid.org/0000-0002-1521-973X</orcidid><orcidid>https://orcid.org/0000-0002-6494-8138</orcidid></search><sort><creationdate>20200403</creationdate><title>Charge transfers and charged defects in WSe 2 /graphene-SiC interfaces</title><author>Dappe, Y J ; Almadori, Y ; Dau, M T ; Vergnaud, C ; Jamet, M ; Paillet, C ; Journot, T ; Hyot, B ; Pochet, P ; Grévin, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1456-5470efc3d1118abcf8288a055d01338a3f2f8656047c16323261815ad10215543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dappe, Y J</creatorcontrib><creatorcontrib>Almadori, Y</creatorcontrib><creatorcontrib>Dau, M T</creatorcontrib><creatorcontrib>Vergnaud, C</creatorcontrib><creatorcontrib>Jamet, M</creatorcontrib><creatorcontrib>Paillet, C</creatorcontrib><creatorcontrib>Journot, T</creatorcontrib><creatorcontrib>Hyot, B</creatorcontrib><creatorcontrib>Pochet, P</creatorcontrib><creatorcontrib>Grévin, B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dappe, Y J</au><au>Almadori, Y</au><au>Dau, M T</au><au>Vergnaud, C</au><au>Jamet, M</au><au>Paillet, C</au><au>Journot, T</au><au>Hyot, B</au><au>Pochet, P</au><au>Grévin, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge transfers and charged defects in WSe 2 /graphene-SiC interfaces</atitle><jtitle>Nanotechnology</jtitle><addtitle>Nanotechnology</addtitle><date>2020-04-03</date><risdate>2020</risdate><volume>31</volume><issue>25</issue><spage>255709</spage><pages>255709-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>We report on Kelvin probe force microscopy (KPFM) and density functional theory (DFT) investigations of charge transfers in vertical heterojunctions between tungsten diselenide (WSe ) layers and graphene on silicon carbide substrates. The experimental data reveal the existence of an interface dipole, which is shown by DFT to originate from the neutralization of the graphene n-doping by an electron transfer towards the transition metal dichalcogenide (TMD) layer. The relative vacuum level shift probed by KPFM between the TMD and the substrate stays constant when passing from monolayer to bilayer graphene, which confirms that the Schottky-Mott model can be rigorously applied to these interfaces by taking into account the charge transfer from the substrate to the TMD. DFT calculations show that the first TMD layer absorbs almost all the excess charges contained in the graphene, and that the second TMD layer shall not play a significant role in the electrostatics of the system. Negatively charged defect at the TMD edges contribute however to the electrostatic landscape probed by KPFM on both TMD layers.</abstract><cop>England</cop><pub>Institute of Physics</pub><pmid>32182596</pmid><doi>10.1088/1361-6528/ab8083</doi><orcidid>https://orcid.org/0000-0002-1358-3474</orcidid><orcidid>https://orcid.org/0000-0002-8247-4677</orcidid><orcidid>https://orcid.org/0000-0001-5224-9535</orcidid><orcidid>https://orcid.org/0000-0001-6021-9256</orcidid><orcidid>https://orcid.org/0000-0002-1521-973X</orcidid><orcidid>https://orcid.org/0000-0002-6494-8138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2020-04, Vol.31 (25), p.255709
issn 0957-4484
1361-6528
language eng
recordid cdi_hal_primary_oai_HAL_hal_02989896v1
source Institute of Physics
subjects Physics
title Charge transfers and charged defects in WSe 2 /graphene-SiC interfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20transfers%20and%20charged%20defects%20in%20WSe%202%20/graphene-SiC%20interfaces&rft.jtitle=Nanotechnology&rft.au=Dappe,%20Y%20J&rft.date=2020-04-03&rft.volume=31&rft.issue=25&rft.spage=255709&rft.pages=255709-&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/1361-6528/ab8083&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02989896v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1456-5470efc3d1118abcf8288a055d01338a3f2f8656047c16323261815ad10215543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32182596&rfr_iscdi=true