Loading…
Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography
We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant pha...
Saved in:
Published in: | Surface & coatings technology 2020-07, Vol.393, p.125765, Article 125765 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653 |
container_end_page | |
container_issue | |
container_start_page | 125765 |
container_title | Surface & coatings technology |
container_volume | 393 |
creator | Zhai, Min Locquet, Alexandre Roquelet, Cyrielle Alexandre, Patrice Daheron, Laurence Citrin, D.S. |
description | We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant phase in the scale films, though magnetite and hematite are also present. Because wüstite is electrically insulating, the incident terahertz electromagnetic pulses largely penetrate into the scale film; however, the pulses are entirely reflected by the underlying electrically conductive steel substrate. Because the film layers are thin, in some cases optically thin, the distinct pulses reflected at the air/scale and scale/steel interfaces overlap in time and thus are not visually evident in the reflected terahertz signal, necessitating the use of deconvolution techniques to recover the sample structure. We compare the merits of three deconvolution techniques, one unsuccessful (frequency-wavelet domain deconvolution) and two successful (sparse deconvolution and autoregressive extrapolation), to characterize the thicknesses of these scale films.
•Terahertz reflectometry is used to measure mill-scale thickness on steel substrates.•THz reflectometry is nondestructive and contactless.•Axial superresolution achieved by advanced signal processing.•Thinnest film thickness measured is 5 μm. |
doi_str_mv | 10.1016/j.surfcoat.2020.125765 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02993361v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897220304345</els_id><sourcerecordid>2449483577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653</originalsourceid><addsrcrecordid>eNqFkE9P3DAQxa2qlboFvgKy1BOHLP6f5AZCbUFawYWeLccZE2-TeLG9Ky2fvl6F9sppNE-_eZr3ELqkZE0JVdfbddpHZ4PJa0ZYEZmslfyEVrSp24pzUX9GK1LEqmlr9hV9S2lLCKF1K1aoewxzDynHvc3-AHgCU9xggjnj4PDkx7FK1oyA8-DtnxlSwmHGKQOMuDviDNEMEPMbzn6CKrjKjf5lyDiHKbxEsxuO5-iLM2OCi_d5hn7__PF8d19tnn493N1uKisYy5UifeugEQQapeq-k2WhhAngvO-aMhXhxMjOSt4KJyWognaio-B6cEryM3S1-A5m1LvoJxOPOhiv7283-qQR1racK3qghf2-sLsYXvclv96GfZzLe5oJ0YqGy7oulFooG0NKEdx_W0r0qXu91f-616fu9dJ9ObxZDqHkPXiIOlkPs4XeR7BZ98F_ZPEXJPKRyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449483577</pqid></control><display><type>article</type><title>Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography</title><source>Elsevier</source><creator>Zhai, Min ; Locquet, Alexandre ; Roquelet, Cyrielle ; Alexandre, Patrice ; Daheron, Laurence ; Citrin, D.S.</creator><creatorcontrib>Zhai, Min ; Locquet, Alexandre ; Roquelet, Cyrielle ; Alexandre, Patrice ; Daheron, Laurence ; Citrin, D.S.</creatorcontrib><description>We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant phase in the scale films, though magnetite and hematite are also present. Because wüstite is electrically insulating, the incident terahertz electromagnetic pulses largely penetrate into the scale film; however, the pulses are entirely reflected by the underlying electrically conductive steel substrate. Because the film layers are thin, in some cases optically thin, the distinct pulses reflected at the air/scale and scale/steel interfaces overlap in time and thus are not visually evident in the reflected terahertz signal, necessitating the use of deconvolution techniques to recover the sample structure. We compare the merits of three deconvolution techniques, one unsuccessful (frequency-wavelet domain deconvolution) and two successful (sparse deconvolution and autoregressive extrapolation), to characterize the thicknesses of these scale films.
•Terahertz reflectometry is used to measure mill-scale thickness on steel substrates.•THz reflectometry is nondestructive and contactless.•Axial superresolution achieved by advanced signal processing.•Thinnest film thickness measured is 5 μm.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2020.125765</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Coated metal ; Deconvolution ; Electromagnetic pulses ; Engineering Sciences ; Hematite ; Nondestructive evaluation ; Nondestructive testing ; Oxide coatings ; Signal processing ; Substrates ; Terahertz frequencies ; Terahertz imaging ; Terahertz reflectometry ; Thickness ; Thin films ; Tomography ; Wustite</subject><ispartof>Surface & coatings technology, 2020-07, Vol.393, p.125765, Article 125765</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653</citedby><cites>FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653</cites><orcidid>0000-0002-6674-4956 ; 0000-0002-3418-7745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02993361$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Min</creatorcontrib><creatorcontrib>Locquet, Alexandre</creatorcontrib><creatorcontrib>Roquelet, Cyrielle</creatorcontrib><creatorcontrib>Alexandre, Patrice</creatorcontrib><creatorcontrib>Daheron, Laurence</creatorcontrib><creatorcontrib>Citrin, D.S.</creatorcontrib><title>Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography</title><title>Surface & coatings technology</title><description>We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant phase in the scale films, though magnetite and hematite are also present. Because wüstite is electrically insulating, the incident terahertz electromagnetic pulses largely penetrate into the scale film; however, the pulses are entirely reflected by the underlying electrically conductive steel substrate. Because the film layers are thin, in some cases optically thin, the distinct pulses reflected at the air/scale and scale/steel interfaces overlap in time and thus are not visually evident in the reflected terahertz signal, necessitating the use of deconvolution techniques to recover the sample structure. We compare the merits of three deconvolution techniques, one unsuccessful (frequency-wavelet domain deconvolution) and two successful (sparse deconvolution and autoregressive extrapolation), to characterize the thicknesses of these scale films.
•Terahertz reflectometry is used to measure mill-scale thickness on steel substrates.•THz reflectometry is nondestructive and contactless.•Axial superresolution achieved by advanced signal processing.•Thinnest film thickness measured is 5 μm.</description><subject>Coated metal</subject><subject>Deconvolution</subject><subject>Electromagnetic pulses</subject><subject>Engineering Sciences</subject><subject>Hematite</subject><subject>Nondestructive evaluation</subject><subject>Nondestructive testing</subject><subject>Oxide coatings</subject><subject>Signal processing</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><subject>Terahertz imaging</subject><subject>Terahertz reflectometry</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Tomography</subject><subject>Wustite</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9P3DAQxa2qlboFvgKy1BOHLP6f5AZCbUFawYWeLccZE2-TeLG9Ky2fvl6F9sppNE-_eZr3ELqkZE0JVdfbddpHZ4PJa0ZYEZmslfyEVrSp24pzUX9GK1LEqmlr9hV9S2lLCKF1K1aoewxzDynHvc3-AHgCU9xggjnj4PDkx7FK1oyA8-DtnxlSwmHGKQOMuDviDNEMEPMbzn6CKrjKjf5lyDiHKbxEsxuO5-iLM2OCi_d5hn7__PF8d19tnn493N1uKisYy5UifeugEQQapeq-k2WhhAngvO-aMhXhxMjOSt4KJyWognaio-B6cEryM3S1-A5m1LvoJxOPOhiv7283-qQR1racK3qghf2-sLsYXvclv96GfZzLe5oJ0YqGy7oulFooG0NKEdx_W0r0qXu91f-616fu9dJ9ObxZDqHkPXiIOlkPs4XeR7BZ98F_ZPEXJPKRyQ</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Zhai, Min</creator><creator>Locquet, Alexandre</creator><creator>Roquelet, Cyrielle</creator><creator>Alexandre, Patrice</creator><creator>Daheron, Laurence</creator><creator>Citrin, D.S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6674-4956</orcidid><orcidid>https://orcid.org/0000-0002-3418-7745</orcidid></search><sort><creationdate>20200715</creationdate><title>Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography</title><author>Zhai, Min ; Locquet, Alexandre ; Roquelet, Cyrielle ; Alexandre, Patrice ; Daheron, Laurence ; Citrin, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coated metal</topic><topic>Deconvolution</topic><topic>Electromagnetic pulses</topic><topic>Engineering Sciences</topic><topic>Hematite</topic><topic>Nondestructive evaluation</topic><topic>Nondestructive testing</topic><topic>Oxide coatings</topic><topic>Signal processing</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><topic>Terahertz imaging</topic><topic>Terahertz reflectometry</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Tomography</topic><topic>Wustite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Min</creatorcontrib><creatorcontrib>Locquet, Alexandre</creatorcontrib><creatorcontrib>Roquelet, Cyrielle</creatorcontrib><creatorcontrib>Alexandre, Patrice</creatorcontrib><creatorcontrib>Daheron, Laurence</creatorcontrib><creatorcontrib>Citrin, D.S.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Min</au><au>Locquet, Alexandre</au><au>Roquelet, Cyrielle</au><au>Alexandre, Patrice</au><au>Daheron, Laurence</au><au>Citrin, D.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography</atitle><jtitle>Surface & coatings technology</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>393</volume><spage>125765</spage><pages>125765-</pages><artnum>125765</artnum><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant phase in the scale films, though magnetite and hematite are also present. Because wüstite is electrically insulating, the incident terahertz electromagnetic pulses largely penetrate into the scale film; however, the pulses are entirely reflected by the underlying electrically conductive steel substrate. Because the film layers are thin, in some cases optically thin, the distinct pulses reflected at the air/scale and scale/steel interfaces overlap in time and thus are not visually evident in the reflected terahertz signal, necessitating the use of deconvolution techniques to recover the sample structure. We compare the merits of three deconvolution techniques, one unsuccessful (frequency-wavelet domain deconvolution) and two successful (sparse deconvolution and autoregressive extrapolation), to characterize the thicknesses of these scale films.
•Terahertz reflectometry is used to measure mill-scale thickness on steel substrates.•THz reflectometry is nondestructive and contactless.•Axial superresolution achieved by advanced signal processing.•Thinnest film thickness measured is 5 μm.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2020.125765</doi><orcidid>https://orcid.org/0000-0002-6674-4956</orcidid><orcidid>https://orcid.org/0000-0002-3418-7745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2020-07, Vol.393, p.125765, Article 125765 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02993361v1 |
source | Elsevier |
subjects | Coated metal Deconvolution Electromagnetic pulses Engineering Sciences Hematite Nondestructive evaluation Nondestructive testing Oxide coatings Signal processing Substrates Terahertz frequencies Terahertz imaging Terahertz reflectometry Thickness Thin films Tomography Wustite |
title | Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T22%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive%20measurement%20of%20mill-scale%20thickness%20on%20steel%20by%20terahertz%20time-of-flight%20tomography&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Zhai,%20Min&rft.date=2020-07-15&rft.volume=393&rft.spage=125765&rft.pages=125765-&rft.artnum=125765&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2020.125765&rft_dat=%3Cproquest_hal_p%3E2449483577%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449483577&rft_id=info:pmid/&rfr_iscdi=true |