Loading…

Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography

We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant pha...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2020-07, Vol.393, p.125765, Article 125765
Main Authors: Zhai, Min, Locquet, Alexandre, Roquelet, Cyrielle, Alexandre, Patrice, Daheron, Laurence, Citrin, D.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653
cites cdi_FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653
container_end_page
container_issue
container_start_page 125765
container_title Surface & coatings technology
container_volume 393
creator Zhai, Min
Locquet, Alexandre
Roquelet, Cyrielle
Alexandre, Patrice
Daheron, Laurence
Citrin, D.S.
description We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant phase in the scale films, though magnetite and hematite are also present. Because wüstite is electrically insulating, the incident terahertz electromagnetic pulses largely penetrate into the scale film; however, the pulses are entirely reflected by the underlying electrically conductive steel substrate. Because the film layers are thin, in some cases optically thin, the distinct pulses reflected at the air/scale and scale/steel interfaces overlap in time and thus are not visually evident in the reflected terahertz signal, necessitating the use of deconvolution techniques to recover the sample structure. We compare the merits of three deconvolution techniques, one unsuccessful (frequency-wavelet domain deconvolution) and two successful (sparse deconvolution and autoregressive extrapolation), to characterize the thicknesses of these scale films. •Terahertz reflectometry is used to measure mill-scale thickness on steel substrates.•THz reflectometry is nondestructive and contactless.•Axial superresolution achieved by advanced signal processing.•Thinnest film thickness measured is 5 μm.
doi_str_mv 10.1016/j.surfcoat.2020.125765
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02993361v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897220304345</els_id><sourcerecordid>2449483577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653</originalsourceid><addsrcrecordid>eNqFkE9P3DAQxa2qlboFvgKy1BOHLP6f5AZCbUFawYWeLccZE2-TeLG9Ky2fvl6F9sppNE-_eZr3ELqkZE0JVdfbddpHZ4PJa0ZYEZmslfyEVrSp24pzUX9GK1LEqmlr9hV9S2lLCKF1K1aoewxzDynHvc3-AHgCU9xggjnj4PDkx7FK1oyA8-DtnxlSwmHGKQOMuDviDNEMEPMbzn6CKrjKjf5lyDiHKbxEsxuO5-iLM2OCi_d5hn7__PF8d19tnn493N1uKisYy5UifeugEQQapeq-k2WhhAngvO-aMhXhxMjOSt4KJyWognaio-B6cEryM3S1-A5m1LvoJxOPOhiv7283-qQR1racK3qghf2-sLsYXvclv96GfZzLe5oJ0YqGy7oulFooG0NKEdx_W0r0qXu91f-616fu9dJ9ObxZDqHkPXiIOlkPs4XeR7BZ98F_ZPEXJPKRyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449483577</pqid></control><display><type>article</type><title>Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography</title><source>Elsevier</source><creator>Zhai, Min ; Locquet, Alexandre ; Roquelet, Cyrielle ; Alexandre, Patrice ; Daheron, Laurence ; Citrin, D.S.</creator><creatorcontrib>Zhai, Min ; Locquet, Alexandre ; Roquelet, Cyrielle ; Alexandre, Patrice ; Daheron, Laurence ; Citrin, D.S.</creatorcontrib><description>We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant phase in the scale films, though magnetite and hematite are also present. Because wüstite is electrically insulating, the incident terahertz electromagnetic pulses largely penetrate into the scale film; however, the pulses are entirely reflected by the underlying electrically conductive steel substrate. Because the film layers are thin, in some cases optically thin, the distinct pulses reflected at the air/scale and scale/steel interfaces overlap in time and thus are not visually evident in the reflected terahertz signal, necessitating the use of deconvolution techniques to recover the sample structure. We compare the merits of three deconvolution techniques, one unsuccessful (frequency-wavelet domain deconvolution) and two successful (sparse deconvolution and autoregressive extrapolation), to characterize the thicknesses of these scale films. •Terahertz reflectometry is used to measure mill-scale thickness on steel substrates.•THz reflectometry is nondestructive and contactless.•Axial superresolution achieved by advanced signal processing.•Thinnest film thickness measured is 5 μm.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2020.125765</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Coated metal ; Deconvolution ; Electromagnetic pulses ; Engineering Sciences ; Hematite ; Nondestructive evaluation ; Nondestructive testing ; Oxide coatings ; Signal processing ; Substrates ; Terahertz frequencies ; Terahertz imaging ; Terahertz reflectometry ; Thickness ; Thin films ; Tomography ; Wustite</subject><ispartof>Surface &amp; coatings technology, 2020-07, Vol.393, p.125765, Article 125765</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653</citedby><cites>FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653</cites><orcidid>0000-0002-6674-4956 ; 0000-0002-3418-7745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02993361$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Min</creatorcontrib><creatorcontrib>Locquet, Alexandre</creatorcontrib><creatorcontrib>Roquelet, Cyrielle</creatorcontrib><creatorcontrib>Alexandre, Patrice</creatorcontrib><creatorcontrib>Daheron, Laurence</creatorcontrib><creatorcontrib>Citrin, D.S.</creatorcontrib><title>Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography</title><title>Surface &amp; coatings technology</title><description>We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant phase in the scale films, though magnetite and hematite are also present. Because wüstite is electrically insulating, the incident terahertz electromagnetic pulses largely penetrate into the scale film; however, the pulses are entirely reflected by the underlying electrically conductive steel substrate. Because the film layers are thin, in some cases optically thin, the distinct pulses reflected at the air/scale and scale/steel interfaces overlap in time and thus are not visually evident in the reflected terahertz signal, necessitating the use of deconvolution techniques to recover the sample structure. We compare the merits of three deconvolution techniques, one unsuccessful (frequency-wavelet domain deconvolution) and two successful (sparse deconvolution and autoregressive extrapolation), to characterize the thicknesses of these scale films. •Terahertz reflectometry is used to measure mill-scale thickness on steel substrates.•THz reflectometry is nondestructive and contactless.•Axial superresolution achieved by advanced signal processing.•Thinnest film thickness measured is 5 μm.</description><subject>Coated metal</subject><subject>Deconvolution</subject><subject>Electromagnetic pulses</subject><subject>Engineering Sciences</subject><subject>Hematite</subject><subject>Nondestructive evaluation</subject><subject>Nondestructive testing</subject><subject>Oxide coatings</subject><subject>Signal processing</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><subject>Terahertz imaging</subject><subject>Terahertz reflectometry</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Tomography</subject><subject>Wustite</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9P3DAQxa2qlboFvgKy1BOHLP6f5AZCbUFawYWeLccZE2-TeLG9Ky2fvl6F9sppNE-_eZr3ELqkZE0JVdfbddpHZ4PJa0ZYEZmslfyEVrSp24pzUX9GK1LEqmlr9hV9S2lLCKF1K1aoewxzDynHvc3-AHgCU9xggjnj4PDkx7FK1oyA8-DtnxlSwmHGKQOMuDviDNEMEPMbzn6CKrjKjf5lyDiHKbxEsxuO5-iLM2OCi_d5hn7__PF8d19tnn493N1uKisYy5UifeugEQQapeq-k2WhhAngvO-aMhXhxMjOSt4KJyWognaio-B6cEryM3S1-A5m1LvoJxOPOhiv7283-qQR1racK3qghf2-sLsYXvclv96GfZzLe5oJ0YqGy7oulFooG0NKEdx_W0r0qXu91f-616fu9dJ9ObxZDqHkPXiIOlkPs4XeR7BZ98F_ZPEXJPKRyQ</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Zhai, Min</creator><creator>Locquet, Alexandre</creator><creator>Roquelet, Cyrielle</creator><creator>Alexandre, Patrice</creator><creator>Daheron, Laurence</creator><creator>Citrin, D.S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6674-4956</orcidid><orcidid>https://orcid.org/0000-0002-3418-7745</orcidid></search><sort><creationdate>20200715</creationdate><title>Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography</title><author>Zhai, Min ; Locquet, Alexandre ; Roquelet, Cyrielle ; Alexandre, Patrice ; Daheron, Laurence ; Citrin, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coated metal</topic><topic>Deconvolution</topic><topic>Electromagnetic pulses</topic><topic>Engineering Sciences</topic><topic>Hematite</topic><topic>Nondestructive evaluation</topic><topic>Nondestructive testing</topic><topic>Oxide coatings</topic><topic>Signal processing</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><topic>Terahertz imaging</topic><topic>Terahertz reflectometry</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Tomography</topic><topic>Wustite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Min</creatorcontrib><creatorcontrib>Locquet, Alexandre</creatorcontrib><creatorcontrib>Roquelet, Cyrielle</creatorcontrib><creatorcontrib>Alexandre, Patrice</creatorcontrib><creatorcontrib>Daheron, Laurence</creatorcontrib><creatorcontrib>Citrin, D.S.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Min</au><au>Locquet, Alexandre</au><au>Roquelet, Cyrielle</au><au>Alexandre, Patrice</au><au>Daheron, Laurence</au><au>Citrin, D.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>393</volume><spage>125765</spage><pages>125765-</pages><artnum>125765</artnum><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>We measure in a nondestructive and noncontact fashion the thicknesses of three scale films with thicknesses 28.5 ± 1.4 μm, 13.4± 0.9 μm, and 5.1 ± 0.3 μm on steel substrates employing terahertz time-of-flight tomography combined with advanced signal-processing techniques. Wüstite is the dominant phase in the scale films, though magnetite and hematite are also present. Because wüstite is electrically insulating, the incident terahertz electromagnetic pulses largely penetrate into the scale film; however, the pulses are entirely reflected by the underlying electrically conductive steel substrate. Because the film layers are thin, in some cases optically thin, the distinct pulses reflected at the air/scale and scale/steel interfaces overlap in time and thus are not visually evident in the reflected terahertz signal, necessitating the use of deconvolution techniques to recover the sample structure. We compare the merits of three deconvolution techniques, one unsuccessful (frequency-wavelet domain deconvolution) and two successful (sparse deconvolution and autoregressive extrapolation), to characterize the thicknesses of these scale films. •Terahertz reflectometry is used to measure mill-scale thickness on steel substrates.•THz reflectometry is nondestructive and contactless.•Axial superresolution achieved by advanced signal processing.•Thinnest film thickness measured is 5 μm.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2020.125765</doi><orcidid>https://orcid.org/0000-0002-6674-4956</orcidid><orcidid>https://orcid.org/0000-0002-3418-7745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2020-07, Vol.393, p.125765, Article 125765
issn 0257-8972
1879-3347
language eng
recordid cdi_hal_primary_oai_HAL_hal_02993361v1
source Elsevier
subjects Coated metal
Deconvolution
Electromagnetic pulses
Engineering Sciences
Hematite
Nondestructive evaluation
Nondestructive testing
Oxide coatings
Signal processing
Substrates
Terahertz frequencies
Terahertz imaging
Terahertz reflectometry
Thickness
Thin films
Tomography
Wustite
title Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T22%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive%20measurement%20of%20mill-scale%20thickness%20on%20steel%20by%20terahertz%20time-of-flight%20tomography&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Zhai,%20Min&rft.date=2020-07-15&rft.volume=393&rft.spage=125765&rft.pages=125765-&rft.artnum=125765&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2020.125765&rft_dat=%3Cproquest_hal_p%3E2449483577%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-60d9fe840e8667db5fe81024e33db824e6030a5bc5394f55e640eb4b1efdef653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449483577&rft_id=info:pmid/&rfr_iscdi=true